共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
3.
《Composites Science and Technology》2004,64(13-14):2239-2250
A variational approach is used to model the behaviour of composite cross-ply laminates damaged by transverse, longitudinal cracking and delamination. An energetic criterion is proposed. It is based on the strain energy release rate associated with each of the three damage modes. The first part of this paper is concerned with the modelling of the transverse and longitudinal cracking. In the second part, a model for studying delamination damage is presented. The numerical results show that these models provide a consistent level of accuracy for a variety of thin laminate material systems and configurations, with various combinations of delaminations and matrix cracks. In this paper several numerical simulations meant to describe initiation for each damage mode are proposed. The estimation of damage modes contributions is achieved for two thin laminates in order to predict the evolution of damage mode transition. 相似文献
4.
5.
An analytical model based on the principle of minimum potential energy is developed and applied to study the effect of multiple cracks in cross-plies on the stiffness of a laminated composite. The transverse cracks are assumed to span the thickness of the cross-ply group only partially unlike in the previous studies in which they were assumed to span the entire thickness of the cross-ply group. This arrangement facilitates the study of competition between the self-similar extension of an inherent flaw within the cross-plies and the multiple parallel cracking. The numerical results for the axial stiffness as a function of both the crack density and the crack length are presented for three different composite material systems (glass/epoxy, graphite/epoxy and ceramic/ceramic) or which experimental results are available so as to validate the model. 相似文献
6.
A simple method for measuring Lamb wave phase velocities is used to obtain data for the lowest symmetric Lamb mode (S
0) and the lowest antisymmetric Lamb mode (A
0) for composite laminates. The experimental data are compared with the results from an approximate theory for the lowest Lamb modes in the low frequency, long wavelength region for a unidirectional laminate, a symmetric cross-ply laminate, a symmetric quasi-isotropic laminate and an aluminum plate. There is good correlation between the data and the results from the approximate theory, which suggests that the approximate theory works well in the low frequency, long wavelength region in these cases. Also, this experimental procedure of measuring phase velocities of the lowest symmetric and antisymmetric modes can be used to characterize laminated composite plates with and without damage since each material and stacking sequence gives distinct lowest symmetric and antisymmetric curves. 相似文献
7.
Some aspects of numerical simulation of Lamb wave propagation in composite laminates using the finite element models with explicit dynamic analysis are addressed in this study. To correctly and efficiently describe the guided-wave excited/received by piezoelectric actuators/sensors, effective models of surface-bounded flat PZT disks based on effective force, moment and displacement are developed. Different finite element models for Lamb wave excitation, collection and propagation in isotropic plate and quasi-isotropic laminated composite are evaluated using continuum elements (3-D solid element) and structural elements (3-D shell element), to elaborate the validity and versatility of the proposed actuator/sensor models. 相似文献
8.
Analysis of stiffness loss in cross-ply composite laminates 总被引:1,自引:0,他引:1
The behaviour of laminated composite plates beyond first-ply failure has been the subject of much research work. It is well known that generally, the load-bearing capability of laminated composite plates can remain significant despite the presence of some damage in the plies. Traditionally, the ply-discount method has been used among analysts and designers, although the approach is generally regarded as too conservative. It is therefore desirable to develop models for the prediction of the mechanical properties of damaged composite laminates at various applied loads, and to be able to correlate the changes in properties with the amount of damage and cracking within each constituent ply. Generally, if the models are to be useful as predictive tools, they must be capable of not only sufficiently describing the damage state but also the nature of the damage evolution with loading. This ‘evolution law’ is often obtained through fracture analysis, although it should be noted that the diffused nature of cracks and the multiplicity of failure modes in composites in general greatly complicates the analysis. The problem of transverse matrix cracking in cross-ply laminates under uniaxial tension is considerably simpler because it is essentially dominated by mode I fracture. Thus it is necessarily the first step for any model aiming to predict stiffness losses in composite laminates. In this paper, a constitutive model of the damage state for composite laminates, first proposed by Allen et al., is used with a damage evolution criterion based on strain energy to predict the stiffness loss due to matrix cracking in cross-ply laminated composite plates. Although the constitutive model does not require the determination of many constants, the state of damage is described by a vector of internal state variables (ISV), which contains information on the crack geometry and fracture modes. A series of parametric finite element analyses was performed to determine the effects of relative ply thicknesses, crack density and crack opening profile on the vector of ISVs. A computer algorithm was written for the analysis of cross-ply laminates based on the damage evolution criterion proposed in this work. The results of the analysis compare favourably with experimental measurements of progressive stiffness loss in damaged cross-ply graphite-epoxy laminates obtained from other researchers. 相似文献
9.
Zahid R. Khokhar Ian A. Ashcroft Vadim V. Silberschmidt 《Computational Materials Science》2009,46(3):607-18
Due to their high specific strength and stiffness, fibre-reinforced composite materials are being increasingly used in structural applications where a high level of performance is important (e.g. aerospace, automotive, offshore structures, etc.). Performance in service of these composites is affected by multi-mechanism damage evolution under loading and environmental conditions. For instance, carbon fibre-reinforced laminates demonstrate a wide spectrum of failure mechanisms such as matrix cracking and delamination. These damage mechanisms can result in significant deterioration of the residual stiffness and load-bearing capacity of composite components and should be thoroughly investigated. The delamination failure mechanism is studied in this paper for a double cantilever beam (DCB) loaded in mode I. Several sensitivity studies are performed to analyse the effects of mesh density and of parameters of the cohesive law on the character of damage propagation in laminates. The microstructural randomness of laminates that is responsible for non-uniform distributions of stresses in them even under uniform loading conditions is accounted for in the model. The random properties are introduced with the use of Weibull’s two-parameter probability density function. Several statistical realisations are carried out which show that the effect of microstructure could significantly affect the macroscopic response emphasizing the need to account for microstructural randomness for accurate predictions of load-carrying capacity of laminate composite structures. 相似文献
10.
The transition of delamination growth between different ply interfaces in composite tape laminates, known as migration, was investigated experimentally. The test method used promotes delamination growth initially along a 0/θ ply interface, which eventually migrates to a neighbouring θ/0 ply interface. Specimens with θ = 60° and 75° were tested. Migration occurs in two main stages: (1) the initial 0/θ interface delamination turns, transforming into intraply cracks that grow through the θ plies; this process occurs at multiple locations across the width of a specimen, (2) one or more of these cracks growing through the θ plies reaches and turns into the θ/0 ply interface, where it continues to grow as a delamination. A correlation was established between these experimental observations and the shear stress sign at the delamination front, obtained by finite element analyses.Overall, the experiments provide insight into the key mechanisms that govern delamination growth and migration. 相似文献
11.
Effects of local stiffness changes and delamination on Lamb wave transmission using surface-mounted piezoelectric transducers 总被引:3,自引:0,他引:3
The paper presents a set of numerical results on the use of surface mounted piezoelectric transducers to analyse the effects of impact damage and delamination of plate-like structures on the Lamb wave mode. The effects of the size, properties and orientation of the damage upon a propagating Lamb wave is qualitatively determined. In this paper, impact damage was simulated by a local change in the stiffness of the material in the structure and a delamination. The effects on the transmission of the incident Lamb wave when it propagates through a region of change in density are analysed. This paper will also demonstrate how the properties of a propagating Lamb wave can be affected by the existence of a delamination in a plate. 相似文献
12.
Specimens of 90° cross-ply glass-reinforced epoxy resins were tested in tension parallel to the direction of reinforcement in the outer plies. The thickness of the inner ply was varied and cracking constraint was observed at small thicknesses. At large inner-ply thicknesses the specimens showed uniform transverse cracking, and at very low inner-ply thicknesses this transverse cracking could be suppressed completely prior to total specimen failure. Fracture toughness values were determined on transverse unidirectional laminates of the same volume fraction. It was found that the cracking constraint observed can be accounted for, using the theory of Aveston and Kelly. 相似文献
13.
J. R. Yeh 《Engineering Fracture Mechanics》1988,30(6):827-837
Fracture mechanics of delamination in ARALL laminates is examined by using a finite element method employing special singular elements. Since these special elements contain the exact stress singularity, the delamination stress intensity factors and energy release rates can be evaluated conveniently. Solution convergence is studied to demonstrate the efficiency of this method. To ensure the validity of the result, the numerical prediction is compared with experimental results. Very good agreement is obtained. 相似文献
14.
《Composites》1995,26(12):859-867
Damage progress in toughened-type carbon fibre-reinforced plastic (CFRP) cross-ply laminates under tensile fatigue loading was measured using the replica technique. The laminate configuration was [0/90m/0], where m = 4, 8 and 12. The damage parameters, transverse crack density and delamination ratio, were determined. A power-law model was proposed, relating the cyclic strain range and the number of cycles at transverse crack initiation. Based on experimental data, a simple shear-lag analysis combined with the modified Paris law was conducted to model the transverse crack multiplication. An extension of the shearlag analysis for laminates containing delaminations initiating from the tips of the transverse cracks was used to conduct a modified Paris law analysis for delamination growth. 相似文献
15.
Amar Garg 《Engineering Fracture Mechanics》1985,22(6):1035-1048
Fracture behavior of cross-ply (0/90)4s, (0/90)10s, (02/902)2s and (04/908/04)T laminates of T300/934 graphite/epoxy material was studied using compact tension specimens of several widths and thicknesses, center notched tension and three point bend specimens. The process of damage initiation and propagation was studied and is discussed in detail. The critical stress intensity factor was evaluated and its variation with specimen size and type is shown. On the basis of these investigations, a suitable specimen for the evaluation of meaningful fracture toughness is suggested. 相似文献
16.
Analysis of stiffness reduction of cracked cross-ply laminates 总被引:4,自引:0,他引:4
Z Hashin 《Engineering Fracture Mechanics》1986,25(5-6):771-778
Stiffness reduction of cracked [0°m/90°n]s laminates is analyzed by variational methods on the basis of the principle of minimum complementary energy. For this purpose admissible stress systems are constructed which satisfy equilibrium and all boundary and interface conditions. The optimal stress field is then determined by minimization of complementary energy. The analysis allows for crack interaction and random crack distribution. Results are given for Young's modulus, shear modulus and Poisson's ratio. Young's modulus results are in excellent agreement with experimental data for [[0°/90°3]]s glass/epoxy laminate. 相似文献
17.
Nobuo Takeda Yoji Okabe Junichiro Kuwahara Seiji Kojima Toshimichi Ogisu 《Composites Science and Technology》2005,65(15-16):2575
The authors and Hitachi Cable, Ltd. have recently developed small-diameter optical fiber and its fiber Bragg grating (FBG) sensor for embedment inside a lamina of composite laminates without strength reduction. The outside diameters of the cladding and polyimide coating are 40 and 52 μm, respectively. First, a brief summary is presented for applications of small-diameter FBG sensors to damage monitoring in composite structures. Then, we propose a new damage detection system for quantitative evaluation of delamination length in CFRP laminates using Lamb wave sensing. In this system, a piezo-ceramic actuator generates Lamb waves in a CFRP laminate. After the waves propagate in the laminate, transmitted waves are received by an FBG sensor attached on or embedded in the laminate using a newly developed high-speed optical wavelength interrogation system. This system was applied to detect interlaminar delamination in CFRP cross-ply laminates. When the Lamb waves passed through the delamination, the amplitude decreased and a new wave mode appeared. These phenomena could be well simulated using a finite element analysis. From the changes in the amplitude ratio and the arrival time of the new mode depending on the delamination length, it was found that this system could evaluate the delamination length quantitatively. Furthermore, small-diameter FBG sensors were embedded in a double-lap type coupon specimen, and the debonding progress could be evaluated using the wavelet transform. 相似文献
18.
A finite element model for predicting delamination resistance of z-pin reinforced laminates under the mode-II load condition is presented. End notched flexure specimen is simulated using a cohesive zone model. The main difference of this approach to previously published cohesive zone models is that the individual bridging force exerted by z-pin is governed by a specific traction-separation law derived from a unit-cell model of single pin failure process, which is independent of the fracture toughness of the unreinforced laminate. Therefore, two separate traction-separation laws are employed; one represents unreinforced laminate properties and the other for the enhanced delamination toughness owing to the pin bridging action. This approach can account for the so-called large scale bridging effect and avoid using concentrated pin forces in numerical models, thus removing the mesh-size dependency and permitting more accurate and reliable computational solutions. 相似文献
19.
Clamping force is a key element that alters the mechanism and sequence of failure in bolted joints of composite laminates. The mode of failure in bolted joints can be controlled by geometrical parameters and the preferred fail safe mode of failure is ‘bearing’ which generally consists of matrix cracks, delamination and fibre microbuckling. Three-dimensional (3-D) pinned (without clamping force) and bolted (1 kN clamping force) joint models were developed in [0/90]s carbon fibre reinforced plastic (CFRP) laminates to show the clamping force effect on the onset and growth of delamination. It is shown that delamination was resulted from the shear stress components (Mode II & III) at the interface and the contribution of the out-of-plane component (Mode I - opening), so the clamping force, was negligible without modelling the in-plane failure modes and their coupling with delamination, which will be considered in future work. 相似文献
20.
Interlaminar stresses resulting from bending of rectangular cross-ply composite laminates are determined using a layer wise laminate theory. Two types of laminates are considered. First a fully simply supported laminate subjected to bi-directional bending is analyzed. The results obtained from this theory are compared with those of the published three-dimensional elasticity solutions to verify the validity and accuracy of the present theory. Then laminates with two edges simply supported and the other two edges free are examined. The results indicate the presence of significant interlaminar stresses near the free edges. 相似文献