首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
碳包铁颗粒和放射状碳纳米管微观结构的研究   总被引:2,自引:0,他引:2  
以苯和甲苯为碳源,二茂铁为催化剂前驱体,含硫化合物为助催化剂,采用竖式炉流动催化法,通过减小载人的氢气量以改变催化剂颗粒的状态及反应条件,获得了碳包铁颗粒以及放射状碳纳米管,运用TEM和HRTEM对其形貌和结构进行了分析,并初步探讨了其生长机理。结果表明,在碳源、催化剂和炉温分布相同的条件下,氢气量为5400mL/min时形成直线型和弯曲型两种不同形态的碳纳米管,后者管径大于前者。氢气量为2000mL/min时,产物90%以上为碳包铁颗粒,其平均直径约为530nm,其中还有少量放射状碳纳米管,其外径为45—50nm,内径为3—5nm,管径较为均匀。  相似文献   

2.
Carbon nanotubes (CNTs) were shortened from 5 to 15 μm to ca. 200 nm using ball milling with ethanol as the milling aid agent, and a platinum catalyst with these shortened carbon nanotubes (SCNTs) as the support was prepared by a high‐pressure colloidal method. It was found that this catalyst with SCNTs showed much higher activity than a platinum catalyst with normal CNTs as support; for methanol anodic oxidation, the activity of the Pt/SCNTs was 50% higher than that of the Pt/CNTs, and the Pt/SCNTs also showed higher activity for the cathodic reduction of oxygen. The Pt/SCNTs were characterised by X‐ray diffraction scanning and transmission electron microscropy. It is suggested that the significant performance enhancement when SCNTs are used as support might result from the generation of new surfaces and defects, the opening of closed nanotubes in the process of milling, higher platinum dispersion on the shortened nanotubes and the interaction of platinum nanoparticles with the SCNTs.  相似文献   

3.
Growth of aligned carbon nanotubes on different substrates such as titanium, copper, stainless steel and graphite foils has been investigated by different characterization techniques such as SEM, TEM, contact angle measurements and Raman spectroscopy. The study aims at gaining a better understanding of the effects of the surface properties of the foils on the alignment, diameter distribution, structure and the yield of nanocarbons. The results revealed that the surface tension of the foils has a significant influence on the size of the Fe catalyst particles on the foil surfaces obtained by ferrocene decomposition. The size of the Fe particles directly determined the structure and alignment of the nanocarbons on the foils. Small sized (about 10 nm) and highly crystalline carbon nanotubes were produced on foils such as Al and Ti with the low surface tension, while it is hard to grow any nanocarbon on the Cu foils due to too high surface tension. Lowering the surface tension of the Cu foils by surface oxidation made it possible to grow carbon nanofibers.  相似文献   

4.
组合表面调控液滴特性强化蒸汽冷凝传热   总被引:7,自引:3,他引:4       下载免费PDF全文
彭本利  马学虎  兰忠  徐威  温荣福  白涛 《化工学报》2015,66(10):3826-3833
制备了具有不同疏水区宽度和面积分率的疏水-亲水间隔规则排列的组合表面。观测常压蒸汽在组合表面上冷凝时疏水区液滴的特性(液滴移除方式和最大液滴半径),利用格子Boltzmann方法模拟组合表面上凝液的运动。考察疏水区、亲水区宽度和表面过冷度对组合表面强化蒸汽冷凝传热的影响。利用滴状-膜状组合传热模型分析组合表面蒸汽冷凝传热性能的影响因素,并与实验结果比较。发现疏水区液滴自发地向亲水区定向迁移,精细设计的组合表面可以实现蒸汽滴状冷凝传热的强化,实验中强化因子可达1.20。疏水区宽度约为0.55 mm时组合表面的传热性能最大。表面过冷度越大,组合表面强化传热的效果越差,模型分析与实验结果吻合良好。  相似文献   

5.
Scanning probe microscopy (SPM) techniques based on nano-mechanical measurements (topography, adhesion, modulus) and electric force microscopy (EFM) have been used to examine mica surfaces modified with the ionic-complementary peptide EFK8 alone and with EFK8–single-walled carbon nanotube (SWNT) dispersions in water in order to gain a deeper understanding of the interaction between nanotubes and ionic-complementary peptides. Through the use of these techniques, it has been shown for the first time that peptide fibers can be distinguished from SWNTs and peptide-wrapped SWNTs. SPM images reveal features consistent with two types of helical structures: EFK8 fibers wrapped around each other during self-assembly and EFK8 fibers wrapped around SWNTs. In this second structure, EFK8 chains should be oriented with their hydrophobic sides oriented toward the SWNTs and their hydrophilic sides toward the water, thereby enabling the dispersion of the nanotubes in aqueous media. We have also demonstrated the formation of hybrid EFK8–SWNT hydrogels that have potentially superior physical and mechanical properties over those of other hydrogels and opens up new applications for this type of material. To the best of our knowledge, this is the first work reporting the formation of a composite hydrogel made of an ionic-complementary peptide and carbon nanotubes.  相似文献   

6.
The luminescence behavior of carbon nanotubes was achieved by grafting polybenzimidazole on its surfaces. The polybenzimidazole-grafted carbon nanotubes composite was analyzed for its optical and electrochemical properties. From the studies, it was observed that the polybenzimidazole emits blue light at 448 nm, whereas the polybenzimidazole-grafted carbon nanotube shows a red shift with corresponding emission at 434 nm. Additionally, the lifetime of exciting electrons has been calculated from the lifetime measurement studies. The polybenzimidazole-grafted carbon nanotube composite also possess 130 F/g of specific capacitance. Micrograph analysis confirms the grafting of polybenzimidazole on the walls of the carbon nanotube.  相似文献   

7.
Boron nitride nanotubes (BNNTs) are analogous nanostructures to carbon nanotubes (CNTs), possessing similar properties such as Young's modulus and thermal conductivity, but superior resistance to oxidation and thermal stability. In addition, BNNTs are insulating materials, whereas CNTs are electrically conductive. They could be used as reinforcements in polymeric matrices as heat dissipators or as protective coatings in harsh environments. However, when incorporating them into polymers, one main drawback is their tendency to agglomerate. To improve their dispersion, covalent surface modification can be applied, with solvent-free approaches being preferred. Herein, we used syngas photo-initiated chemical vapour deposition (PICVD) to incorporate oxygen functionalities on the surface of BNNT. X-ray photoelectron spectroscopy analysis showed a highly oxidized BNNT surface after treatment. In addition, a decrease in water contact angle and an increase in surface energy were observed for the treated material. These results open new possibilities to incorporate hydrophilic BNNTs surfaces into polar polymers or other matrices of interest.  相似文献   

8.
微通道内表面性质对其内流体流动特性的影响   总被引:1,自引:0,他引:1  
通过对玻璃微通道内壁表面进行羟基化处理、溶胶-凝胶法纳米SiO2颗粒沉积以及疏水分子自组装等改性处理,制备得到了具有不同内壁表面润湿性和粗糙度的微通道;系统研究了微通道内表面性质对其内流体流动特性的影响。结果表明,在微通道内表面浸润性相同(同为亲水或疏水)时,粗糙表面会比光滑表面给微通道内的流体流动带来更大的阻力,而且流体流动推动力越大时其影响越大;当微通道内表面粗糙度相同时,亲水表面会比疏水表面给微通道内的流体流动带来更大的阻力,而且流体流动推动力越大时其影响越显著;相比之下,微通道内表面浸润性对其内流体流动的影响比其粗糙度的影响更大。研究结果可以为微流动系统或微流体机械的设计和应用提供指导。  相似文献   

9.
Chensha Li  Yaping Tang  Feng Zhou  Hao Lin  Ji Liang 《Carbon》2006,44(10):2021-2026
This study focuses on in situ synthesis of CdS nanoparticles on the surfaces of multiwalled carbon nanotubes. By chemical reaction of cadmium chloride and thioacetamide in the solution with carbon nanotubes, which were pretreated by air oxidization and acid modification, cadmium sulfide nanoparticles densely supported on carbon nanotubes with 10 nm size and homogeneous distribution were prepared. The composite material with the composite structure of CdS decorating the nanotube surfaces was characterized using scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction and electron diffraction pattern. The CdS nanoparticles are of cubic crystal structure, show good adhesion to the nanotubes. This method can be extended to prepare other inorganic nanoparticle-carbon nanotube composites.  相似文献   

10.
Raman spectra of octadecylamine (ODA) molecules covalently bound to the surface of single walled carbon nanotubes were obtained by varying the laser excitation energy from 1.92 to 3.81 eV. A strong dependence of the Raman intensity on the excitation energy was observed and, under specific conditions of resonance, the Raman signal from the amide linkage can become even stronger than the resonant Raman signal of the carbon nanotubes. This result is explained in terms of a chemical enhancement mechanism due to charge transfer between the ODA molecules and the nanotubes. The enhancement factor was up to 100 times higher than the value typically reported for the chemical Surface Enhanced Raman Scattering (SERS) effect. Our results show that carbon nanotubes may contribute to the still controversial understanding of the ‘chemical’ effects to the enhancement in SERS, extending the scope of application of this analytical tool in strategic areas such as biomedicine, catalysis and environmental analysis.  相似文献   

11.
Gold nanoparticles supported on carbon nanotubes (CNTs) were obtained by using electroless plating technique. High-resolution transmission electron microscopy evidenced the high-density and homogeneous dispersion of spherical gold nanoparticles on the outer surfaces of the carbon nanotubes, with a sharp particle size distribution centered at around 3–4 nm of diameter. The resultant hybrid nanostructures have potential application for being used as novel gold nanocatalysts.  相似文献   

12.
工艺参数对浮游催化法制备碳纳米管的影响   总被引:1,自引:0,他引:1  
采用浮游催化法喷雾进料技术制备碳纳米管。研究表明,工艺参数如催化剂含量、硫添加量和氢气流量对产物收率、形貌和微观结构有显著影响;低催化剂含量、合适的硫添加量和高氢气流量有利于较细直径碳纳爿管的生成。通过优化工艺参数可以制备出平均直径为35m的均匀纯净的碳纳米管。  相似文献   

13.
邓会宁  杨秀丽  田明 《化工进展》2014,33(11):3000-3006
碳纳米管不仅具有优异的力学性质和超大的比表面积,同时具有优良的传输特性,将其添加到聚合物中制备复合分离膜,具有广阔的应用前景。通过化学改性将碳纳米管功能化,提高其在聚合物中的分散性,制备碳纳米管/聚合物复合膜。本文在介绍了碳纳米管功能化、碳纳米管/聚合物复合膜制备方法的基础上,综述了功能化碳纳米管的加入对复合分离膜亲水性、水通量、机械稳定性以及分离等性能的影响。总结了近年来对碳纳米管在聚合物膜内定向排列的研究进展及碳纳米管定向对复合膜相关性能的影响。由于碳纳米管材料的各向异性,利用电场、磁场及流场等对碳纳米管在聚合物膜内的分布进行定向,从而充分利用其优异的性能,是该类复合膜的研究方向。  相似文献   

14.
Multiwalled carbon nanotubes (MWNTs) were synthesized using a chemical vapor deposition floating feed method in a vertical reactor. Effects of the preparation variables on the average diameter of carbon nanotubes were systematically examined using the fractional factorial design (FFD), path of the steepest ascent, and central composite design (CCD) coupled with the response surface methodology. From the FFD study, the main and interactive effects of reaction temperature, methane flow rate, and chamber pressure were concluded to be the key factors influencing the diameter of MWNTs. Two empirical models, representing the dependence of the diameter of carbon nanotubes at the vicinities around maximum (420 nm) and minimum (15 nm) on the reaction temperature and methane flow rate, were constructed in two independent CCD studies. These models, shown as contour diagrams, indicated that the diameter of carbon nanotubes generally increased with increasing reaction temperature and methane flow rate. Based on both models, the diameter of MWNTs from 15 to 420 nm can be controlled precisely by using a continuous CVD fabrication method.  相似文献   

15.
Adhesion and activation of platelets are important steps in the thrombosis of blood after contact with a biomaterial surface and are governed, in part, by the wettability of the surface. Since most implanted devices are in contact with blood under flow conditions, it is important to study the effect of wettability of device surfaces on the behavior of platelets also under flow. To this end, wettability gradient polyethylene surfaces were prepared through glow discharge with partial shielding over a length of 5 cm, with advancing water contact angles varying from 95 to 45 degrees and a contact angle hysteresis of 30 degrees. The role of blood flow on the adhesion of platelets was examined by incubating these gradient surfaces in anticoagulated, whole human blood under static conditions or in blood under a flow of 10 or 40 ml/min through a 3 mm diameter circuit or for 5 or 15 min with either the hydrophobic or hydrophilic end upstream. Generally, more platelets adhered on the hydrophilic end of the wettability gradient than on the hydrophobic end, although the increment along the wettability gradient was dependent on both the flow conditions and direction. More platelets adhered under a flow of 10 ml/min than under static conditions, due to higher mass transport. Especially when the hydrophilic end was upstream, there was a more pronounced adhesion. This can be explained in terms of immediate platelet activation by shear stress imposed at the upstream end. During flow of 40 ml/min, platelet adhesion on an upstream hydrophilic end was less than on a downstream hydrophilic end. We conclude that platelets detach from the hydrophilic end at high shear stress due to the spherical form of adhered platelets. Platelets on the hydrophobic end could withstand detachment by strong, flat shaped platelet-material contact.  相似文献   

16.
Supramolecular surface modification of single-walled carbon nanotubes (SWCNTs) using an amphiphilic molecule containing a bent triptycene moiety and a hydrophilic oligo(ethylene glycol) chain is described. The surface modification was realized through the binding of the triptycene moiety onto the sidewall of SWCNTs through a π–π stacking interaction, and the oligo(ethylene glycol) chains extend into the water and act as dispersing agents, thus yielding an aqueous SWCNT dispersion. This dispersion is stable for more than six months and contains a high concentration of SWCNTs. The dispersion was characterized by absorption, fluorescence, and Raman spectroscopy. Based on shape-fitting of SWCNTs and the triptycene moiety, the stacking of triptycene moieties on the SWCNT sidewall shows a nice selectivity for SWCNTs with a diameter of 1.0 nm.  相似文献   

17.
A pitch coke was given 4 types of pretreatment to modify the surface state; air oxidation, heatingquenching, steam treatment and hydrogen treatment. The treated cokes were impregnated with nickel and gasified in an atmospheric hydrogen flow. The catalytic reactivity of the pitch coke was enhanced by these pretreatments. Several properties of pretreated cokes were compared and it seemed that highly hydrophilic or acidic surfaces of carbon were unfavorable to metal-catalyzed hydrogasification. The reactivity enhancement was ascribed to an increase in the hydrogen adsorption capacity of nickel on the pretreated coke. The oxygen-containing surface groups are presumed to inhibit the spillover of atomic hydrogen from nickel to carbon. The effect of 1 type of pretreatment. heating-quenching, seems to relate to the expansion in pore volume.  相似文献   

18.
Imparting superhydrophobicity to surfaces has direct implications for developing water-repellent materials. Most hydrophobic materials cannot be applied directly to specific surfaces like leather because of noncompatibility. Although methacrylic polymers are compatible to leather, their inherent hydrophilic characteristics make it challenging to use for introducing hydrophobicity or superhydrophobicity. In this article, we present a strategy of introducing hydrophobicity in various degrees as well as superhydrophobicity to different surfaces, particularly leather and glass surfaces by using conjugates of methacrylic polymers and various carbon nanomaterials. The covalent functionalization of methacrylate polymers with carbon nanotubes and fullerenes was performed by radical polymerization in the presence or absence of chain transfer agents (CTAs). CTA was used during polymerization to introduce carboxylic acid group, necessary for chromium-assisted binding to leather to avoid leaching. A balance between the compatibility of the polymer nanoconjugates with the leather and the amount necessary for coating stabilization was studied by a rheometer. While water contact angle measurement indicated the mild hydrophobicity in most cases, we were delighted to observe superhydrophobicity in one case presumably due to increased roughness because of the presence of specific nanomaterial to overcome inherent hydrophilicity of methacrylic polymers. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48627.  相似文献   

19.
超疏水表面微通道内水的传热特性   总被引:8,自引:7,他引:1       下载免费PDF全文
微通道传热效率高但流动阻力大,超疏水表面因其与水具有滑移边界而表现出低流阻的特征,在微过程中具有应用前景。利用化学刻蚀法制备出具有微纳米阶层结构的铝基超疏水表面微通道(内径为0.68mm)。在超疏/亲水微通道内进行了水的流动传热实验研究,并将结果进行对比。研究发现存在于超疏水表面微纳米结构里的气泡层减小了水的流动阻力,也降低了表面传热系数,但降低程度明显小于流动阻力的降低,传热系数高于考虑纳米气泡层计算的传热系数。因此认为在水的滑移速度作用下,凹穴中微纳米级气泡内产生了气体的涡旋流动,一定程度上增强了传热效果。  相似文献   

20.
The effects of growth conditions, such as methane flow rates and type of substrate on the distribution, structure and properties of nanotubes were examined. A scanning electron microscope equipped with a Raman spectrometer enabled us to obtain critical information about the structure and electrical properties of the nanotubes simultaneously, and it was shown that these were highly dependent on the methane flow rate. At a methane flow rate of 600 cc/min, we primarily obtained double-walled carbon nanotubes having predominantly semiconducting properties. At a higher methane flow rate (700 cc/min), a mixture of single-walled and double-walled carbon nanotubes was created, most of which were semiconducting. At low methane flow rates (300 and 500 cc/min), metallic multi-walled carbon nanotubes were predominated. Carbon nanotubes grown on a quartz substrate were between 4–10 μm in length, whereas those grown on silicon were longer (∼15–20 μm). The primary growth mechanism observed was base growth, although some cap growth did occur. Based on the results of this study, it is now possible to carefully control the synthesis conditions to produce carbon nanotubes that possess specific electrical properties that suit the desired application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号