首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
邱欣斌  刘飞翔  陈国华 《化工进展》2018,37(4):1480-1488
石墨烯因具备着超高的电荷迁移率,近年来在导电油墨领域备受关注,它赋予了石墨烯导电油墨优异的导电性能、耐腐蚀性以及耐候性等优点。本文通过查阅文献的方式,简要介绍了导电相石墨烯的制备方法及导电油墨的导电机理,着重介绍了石墨烯导电油墨的制备工艺,其中包含氧化还原法、机械剥离法、液相剥离法等制备工艺。综述了石墨烯导电油墨在能源、电子器件、功能传感器方面的应用。提出了石墨烯导电油墨未来研究的关键性问题,如石墨烯导电油墨分散稳定性问题、配方环保问题、氧化石墨烯(GO)导电油墨的还原技术问题等。最后提出,石墨烯导电油墨应朝着低成本、绿色化、产业化的方向发展。  相似文献   

2.
The effect of grain boundaries and wrinkles on the electrical properties of polycrystalline graphene is pronounced. Here we investigate the stitching between grains of polycrystalline graphene, specifically, overlapping of layers at the boundaries, grown by chemical vapor deposition (CVD) and subsequently doped by the oxidized Cu substrate. We analyze overlapped regions between 60 and 220 nm wide via Raman spectroscopy, and find that some of these overlapped boundaries contain AB–stacked bilayers. The Raman spectra from the overlapped grain boundaries are distinctly different from bilayer graphene and exhibit splitting of the G band peak. The degree of splitting, peak widths, as well as peak intensities depend on the width of the overlap. We attribute these features to inhomogeneous doping by charge carriers (holes) across the overlapped regions via the oxidized Cu substrate. As a result, the Fermi level at the overlapped grain boundaries lies between 0.3 and 0.4 eV below the charge neutrality point. Our results suggest an enhancement of electrical conductivity across overlapped grain boundaries, similar to previously observed measurements (Tsen et al., 2012). The dependence of charge distribution on the width of overlapping of grain boundaries may have strong implications for the growth of large-area graphene with enhanced conductivity.  相似文献   

3.
Planar carbon-based electronic devices, including metal/semiconductor junctions, transistors and interconnects, can now be formed from patterned sheets of graphene. Most simulations of charge transport within graphene-based electronic devices assume an energy band structure based on a nearest-neighbour tight binding analysis. In this paper, the energy band structure and conductance of graphene nanoribbons and metal/semiconductor junctions are obtained using a third nearest-neighbour tight binding analysis in conjunction with an efficient nonequilibrium Green's function formalism. We find significant differences in both the energy band structure and conductance obtained with the two approximations.  相似文献   

4.
Graphene nanosheets were prepared by complete oxidation of pristine graphite followed by thermal exfoliation and reduction. Polyethylene terephthalate (PET)/graphene nanocomposites were prepared by melt compounding. Transmission electron microscopy observation indicated that graphene nanosheets exhibited a uniform dispersion in PET matrix. The incorporation of graphene greatly improved the electrical conductivity of PET, resulting in a sharp transition from electrical insulator to semiconductor with a low percolation threshold of 0.47 vol.%. A high electrical conductivity of 2.11 S/m was achieved with only 3.0 vol.% of graphene. The low percolation threshold and superior electrical conductivity are attributed to the high aspect ratio, large specific surface area and uniform dispersion of the graphene nanosheets in PET matrix.  相似文献   

5.
O. Akhavan 《Carbon》2011,49(1):11-18
Graphene oxide platelets synthesized by using a chemical exfoliation method were dispersed in a suspension of ZnO nanoparticles to fabricate ZnO/graphene oxide composite. Formation of graphene oxide platelets (with average thickness of ∼0.8 nm) hybridized by ZnO nanoparticles (with average diameter of ∼20 nm) was investigated. The 2D band in Raman spectrum confirmed formation of single-layer graphene oxides. The gradual photocatalytic reduction of the graphene oxide sheets in the ZnO/graphene oxide suspension of ethanol was studied by using X-ray photoelectron spectroscopy for different ultra violet (UV)–visible irradiation times. After 2 h irradiation, the relative concentration of the C–OH, CO and OC–OH bonds showed nearly 80% reduction relative to the corresponding concentrations before irradiation. The chemical reduction was accompanied by variations in the optical absorption of the ZnO/graphene (oxide) suspension, as its color changed from light brown to black. The current–voltage measurement showed that electrical sheets resistance of the ZnO/graphene oxide sheets decreased by increasing the irradiation time. Therefore, the ZnO nanoparticles in the ZnO/graphene oxide composite could be applied in gradual chemical reduction and consequently tuning the electrical conductivity of the graphene oxide platelets by variation of UV irradiation time in a photocatalytic process.  相似文献   

6.
The development of supramolecular structures (conducting hydrogels) obtained from the charge–charge interaction of sodium dodecyl sulfate micelles and oppositely charged polypyrrole chains represents an important step to obtain self-supported and flexible electrodes for supercapacitors. Herein, the energy density of polypyrrole hydrogel-based supercapacitors is enhanced by the incorporation of graphene nanoplatelets that introduced the electrical double capacitance contribution to the overall response. The electrochemical performance of synthesized electrodes was optimized from the relative variation in the concentration of supramolecular arrangements (micelles of sodium dodecyl sulfate), pyrrole, and graphene nanoplatelets. As result, higher capacitive retention is observed for modified electrodes (with the incorporation of graphene) – in order of 90% after 1000 cycles of use, preserving the high conductivity and intrinsic mechanical properties (flexibility and stretchability) reaching an areal capacitance of 210.7 mFcm−2.  相似文献   

7.
In this study, composite thin films were fabricated by mixing one‐dimensional silver nanowires (AgNWs) with graphene, polybenzoxazine (PBZ) and epoxy. Their electrical and thermal properties under different environmental conditions were investigated. The AgNWs were prepared by a polyol reduction method using ethylene glycol as a reducing agent and polyvinylpyrrolidone as a soft template to reduce silver ions. High aspect ratio AgNWs were then mixed into polymer matrices to allow them to form electrical and thermal conductive paths. Next, a trace amount of graphene was added into the nanocomposites in order to enhance their electrical and thermal properties. The results showed that the addition of graphene and AgNWs improved the threshold leakage current, and a 33% increase in thermal diffusivity was observed. The water resistance and gas barrier properties of PBZ and graphene effectively improved the thermal oxidation stability, and a 200% increase in electrical conductivity was achieved after 120 h of thermal oxidation treatment. A considerable difference was observed between the moduli of epoxy and PBZ. Hardness and phase analyses using atomic force microscopy showed that material modulus mismatch occurred across the interface between the materials, triggering phonon scattering. However, the increase in thermal conductivity was not significant for either material. © 2018 Society of Chemical Industry  相似文献   

8.
韩超灵  陈振乾 《化工学报》2020,71(z1):448-453
燃料电池作为新型清洁能源技术具有高效的能源转化效率和环境友好等优点,在诸如交通运输以及航空航天等领域有着重要而广泛的应用。在影响燃料电池性能的众多因素中,电极的高效催化与稳定性对于整个燃料电池系统的性能至关重要。近年来,石墨烯材料由于优异的电学与力学性质为低铂高效催化研究提供了理论上的可行性。本研究以六氯环三磷腈(HCCP)为原料设计了一步热还原合成法实验制备了磷氮双掺杂石墨烯,并通过添加碳纳米颗粒增加了石墨烯层间间距,改善了石墨烯层间的团聚效应,提高了氧化还原(ORR)性能。研究结果表明,当AC添加含量与GO的质量比为10%时,其比表面积与电化学性能提升最为明显,极限电流密度达到-6.89 mA·cm-2并且氧化活性能保持80%以上。因此,使用添加碳纳米颗粒对磷氮双掺杂石墨烯作为燃料电池非金属催化剂材料的进一步探索具有巨大的潜力。  相似文献   

9.
10.
Electrically conducting thiophene‐based copolymers were synthesized by electropolymerization. The potential range used has a strong influence on the film structure and properties. The extent of oxidation of the copolymers was determined from the ratio of the oxidation to reduction charge, Qox/Qred. The use of wide potential range leads to reduced films, whereas the narrow range leads to partially oxidized films. The copolymers exhibit a characteristic band in UV–vis spectra at ~ 410 nm, which shifts to higher wavelengths for the more doped material. The electrical conductivity of the copolymers was correlated to their morphology and their structure. The copolymer with higher conductivity is partially reduced, has compact morphology and higher ratio of quinoid to benzenoid rings. The energy gap of the copolymers is reversely proportional to their electrical conductivity. The optical and electrical properties of the copolymers make them very well suited for use as hole transport layers (HTL) in organic opto‐electronic devices. We prepared polymer : fullerene solar cells with copolymer HTLs. The solar cell performance was tested with very encouraging initial results. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
马生贵  田博文  周雨薇  陈琳  江霞  高涛 《化工学报》2021,72(9):4496-4503
利用密度泛函理论研究H2S分子在氮掺杂Stone-Wales(SW)缺陷石墨烯上的吸附行为,通过吸附能、差分电荷密度、Bader电荷和电子态密度等分析了H2S分子在SW缺陷石墨烯及氮掺杂SW缺陷石墨烯上的吸附差异。计算结果表明氮原子掺杂可以有效提升H2S分子与石墨烯表面的相互作用,并加强二者之间的电荷转移。其中,氮原子主要作为电子传递的桥梁参与H2S与石墨烯表面之间的电荷转移。H2S分子被选择性吸附在SW缺陷及氮掺杂SW缺陷石墨烯的五元碳环中心处,这说明五元碳环的电荷分布促进H2S分子的吸附行为。  相似文献   

12.
The unique electronic properties of graphene make it an advantageous material for use in many applications, except those that require a band gap. Much work has been done to introduce an appropriately tuned band gap into graphene, including uniaxial strain and oxidation, with varying levels of success. We report here that the stacking configuration of the sheets in multilayered graphene oxide can have a significant impact on the band gap. Through comparison of X-ray absorption near-edge spectra of multilayered pristine graphene sheets with spectra simulated using density functional theory, we have found that AA-stacking pushes unoccupied states closer to the Fermi level than AB-stacking by widening the π1 resonance in both graphene oxide and graphene. If the near-Fermi states have been removed such that the nearest unoccupied state to the Fermi level is the π1 band, then AA-stacked multilayered graphene oxide will have a smaller band gap than AB-stacked graphene oxide. We have confirmed this by measuring the band gap of graphene oxide and reduced graphene oxide indirectly using X-ray absorption near-edge spectroscopy and X-ray emission spectroscopy. Controlling the stacking configuration of multilayered graphene oxide may provide a novel method for tuning its band gap.  相似文献   

13.
SiC@Graphene (SiC@G) core-shell nanoparticles were successfully prepared by a facile fluidized bed (FB) chemical vapor deposition (CVD) method. SiC@G core-shell nanoparticles with an average size of 10 nm and graphene from 1 to 5 layers with a controllable thickness were obtained by finely adjusting the experimental temperatures. The formation of SiC nanoparticles and graphene layers was confirmed by the results of X-ray diffraction (XRD) and Raman Spectroscopy. The graphene content in SiC@G core-shell nanoparticles prepared at different temperatures was measured from thermogravimetric analysis (TG), which varied from 5.89% to 11.88 mass%. From X-ray photoelectron spectroscopy (XPS) results, no absorption assigned to Si-O band was detected, indicating the effective protection of the SiC nanoparticles against oxidation by the graphene shell to resist oxidation of SiC nanoparticles. This novel method of preparation of SiC@G core-shell nanoparticles could be applied to large-scale production and find diverse applications in related fields.  相似文献   

14.
Benzenesulfonate‐doped poly(3,4‐ethylenedioxythiophene) (PEDOT‐Bzs)/graphene thermoelectric (TE) composites with various graphene filler contents were synthesized in five different kinds of solvents. Dodecylbenzenesulfonic acid (DBSA) was used to achieve good dispersion of graphene into the PEDOT matrix. Among the synthesized PEDOT materials, the one synthesized in methanol (PEDOT‐MeOH) had the highest electrical conductivity. X‐ray photoelectron spectroscopy (XPS) analysis showed almost the same charge carrier concentration for all PEDOT materials. However, the X‐ray diffraction (XRD) analysis highlighted the enhancement of PEDOT chain stacking by shorter‐chain alcoholic solvents, as a result of which the carrier mobility and electrical conductivity were increased. The electrical conductivity and the Seebeck coefficient of the PEDOT/graphene composites were significantly improved with increasing the graphene content, which strongly depended on increased carrier mobility. The thermal conductivity of the composites exhibited relatively small changes, attributed to phonon scattering effects. The maximum TE efficiency of the PEDOT‐MeOH/graphene composite with 75 wt % graphene showed a substantially improved value of 1.9 × 10?2, higher than that of the other PEDOT/graphene composites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42107.  相似文献   

15.
Fano resonances and their strong doping dependence are observed in Raman scattering of single-layer graphene (SLG). As the Fermi level is varied by a back-gate bias, the Raman G band of SLG exhibits an asymmetric line shape near the charge neutrality point as a manifestation of a Fano resonance, whereas the line shape is symmetric when the graphene sample is electron or hole doped. However, the G band of bilayer graphene (BLG) does not exhibit any Fano resonance regardless of doping. The observed Fano resonance can be interpreted as interferences between the phonon and excitonic many-body spectra in SLG. The absence of a Fano resonance in the Raman G band of BLG can be explained in the same framework since excitonic interactions are not expected in BLG.  相似文献   

16.
Fan X  Shen Z  Liu AQ  Kuo JL 《Nanoscale》2012,4(6):2157-2165
Boron nitride (BN) domains are easily formed in the basal plane of graphene due to phase separation. With first-principles calculations, it is demonstrated theoretically that the band gap of graphene can be opened effectively around K (or K') points by introducing small BN domains. It is also found that random doping with boron or nitrogen is possible to open a small gap in the Dirac points, except for the modulation of the Fermi level. The surface charges which belong to the π states near Dirac points are found to be redistributed locally. The charge redistribution is attributed to the change of localized potential due to doping effects. The band opening induced by the doped BN domain is found to be due to the breaking of localized symmetry of the potential. Therefore, doping graphene with BN domains is an effective method to open a band gap for carbon-based next-generation microelectronic devices.  相似文献   

17.
18.
High quality graphene with a large area and smooth edges has been obtained by unrolling the so-called ‘cup-stacked’ carbon nanotubes (CSCNTs) by the solution-phase oxidation and reduction. Atomic force microscopy and transmission electron microscopy observations reveal that the obtained graphene layers can even have a size of 20 μm in width and 100 μm in length, much larger than that of graphene unzipped from multi-walled carbon nanotubes. The low ratio of the D to G band intensities (within the 0.15–0.20 range) in Raman spectra indicates high quality of the obtained graphene, when compared to other graphene produced by the solution-phase oxidation. A formation mechanism is suggested for the graphene unrolled from the CSCNTs, providing an insight into the real microstructure of the CSCNTs, which are essentially continuous graphene layers rolled along the tube axis, yielding a pseudo cup-stacked like structure.  相似文献   

19.
CuO/graphene composite as anode materials for lithium-ion batteries   总被引:2,自引:0,他引:2  
CuO/graphene composite is synthesized from CuO and graphene oxide sheets following reduced by hydrazine vapor. As the electrode material for lithium-ion batteries, CuO nanoparticles with sizes of about 30 nm homogeneously locate on graphene sheets, and act as spacers to effectively prevent the agglomeration of graphene sheets, keeping their high active surface. In turn, the graphene sheets with good electrical conductivity server as a conducting network for fast electron transfer between the active materials and charge collector, as well as buffered spaces to accommodate the volume expansion/contraction during discharge/charge process. The synergetic effect is beneficial for the electrochemical performances of CuO/graphene composite, such as improved initial coulombic efficiency (68.7%) and reversible capacity of 583.5 mAh g−1 with 75.5% retention of the reversible capacity after 50 cycles.  相似文献   

20.
SiCNO ceramic is prepared by pyrolyzing modified polysilazane. Its microstructure feature, dielectric properties and charge transition mechanisms are studied based on the analysis of effects of pyrolysis temperature on AC electrical performance. The Tauc band and the energy states density at Fermi level are studied by ultraviolet absorption and dielectric tests. The charge transition in the silicon-based matrix was analyzed according to Jonscher's dielectric relaxation theory. Results show that SiCNO ceramic obtained at 1000–1300?°C is amorphous with chemical stability. Three types of charge transition, that is, excitation from deep traps into the delocalized bands and the corresponding reverse capture processes, hopping near the Fermi level, and localized hopping of an electron in a potential double well, are enhanced as annealing temperature increases, which occur within energy band of Si-based matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号