首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, a highly sensitive electrochemical sensor for the determination of tryptophan (Trp) was fabricate by electrodeposition of gold nanoparticles (AuNPs) onto carbon nanotube (CNT) films pre-cast on a glassy carbon electrode (GCE), forming an AuNP-CNT composite-modified GCE (AuNP-CNT/GCE). Scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were used for the surface analysis of the electrode. The results indicate that the hybrid nanomaterials induced a substantial decrease in the overpotential of the Trp oxidation reaction and exhibited a remarkable synergistic effect on the electrocatalytic activity toward the oxidation of Trp. In phosphate buffer solution (pH 7.4), the modified electrode showed excellent analytical performance for the amperometric determination of Trp. The peak currents possess a linear relationship with the concentration of Trp in the range of 30 nM to 2.5 μM, and the detection limit is 10 nM (S/N = 3). In addition, the modified electrode was used to determine Trp concentration in pharmaceutical samples with satisfactory results.  相似文献   

2.
An electrochemical sensor based on gold nanoparticles (GNPs)/multiwalled carbon nanotubes (MWCNTs)/poly (1,5-naphthalenediamine) films modified glassy carbon electrode (GCE) was fabricated. The effectiveness of the sensor was confirmed by sensitive detection of cellobiose dehydrogenase (CDH) gene which was extracted from Phanerochaete chrysosporium using polymerase chain reaction (PCR). The monomer of 1,5-naphthalenediamine was electropolymerized on the GCE surface with abundant free amino groups which enhanced the stability of MWCNTs modified electrode. Congo red (CR)-functionalized MWCNTs possess excellent conductivity as well as high solubility in water which enabled to form the uniform and stable network nanostructures easily and created a large number of binding sites for electrodeposition of GNPs. The continuous GNPs together with MWCNTs greatly increased the surface area, conductivity and electrocatalytic activity. This electrode structure significantly improved the sensitivity of sensor and enhanced the DNA immobilization and hybridization. The thiol modified capture probes were immobilized onto the composite films-modified GCE by a direct formation of thiol–Au bond and horseradish peroxidase–streptavidin (HRP–SA) conjugates were labeled to the biotinylated detection probes through biotin–streptavidin bond. Scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were used to investigate the film assembly and DNA hybridization processes. The amperometric current response to HRP-catalyzed reaction was linearly related to the common logarithm of the target nucleic acid concentration in the range of 1.0 × 10−15–1.0 × 10−10 M, with the detection limit of 1.2 × 10−16 M. In addition, the electrochemical biosensor exhibited high sensitivity, selectivity, stability and reproducibility.  相似文献   

3.
A polyaniline (PANI)‐Cu nanocomposite‐modified electrode was fabricated by the electrochemical polymerization of aniline and the electrodeposition of copper under constant potentials on a glassy carbon electrode (GCE), respectively. Scanning electron microscope result shows that the PANI‐Cu composite on the surface of the GCE displays the nanofibers having an average diameter of about 80 nm with lengths varying from 1.1 to 1.2 μm. The electrode exhibits enhanced electrocatalytic behavior to the reduction of nitrite compared to the PANI‐modified GCE. The effects of applied potential, pH value of the detection solution, electropolymerization charge, temperature, and nitrite concentration on the current response of the composite‐modified GCE were investigated and discussed. Under optimal conditions, the PANI‐Cu composite‐modified GCE can be used to determine nitrite concentration in a wide linear range (n = 18) of 0.049 and 70.0 μM and a limit of detection of 0.025 μM. The sensitivity of the electrode was 0.312 μA μM?1 cm?2. The PANI‐Cu composite‐modified GCE had the good storage stability. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
In this paper, a novel nitrite sensor was constructed based on electrodeposition of gold nanoparticles (AuNPs) on a copper calcined layered double hydroxide (Cu-CLDH) modified glassy carbon electrode. Electrochemical experiments showed that AuNPs/CLDH composite film exhibited excellent electrocatalytic oxidation activity with nitrite due to the synergistic effect of the Cu-CLDH with AuNPs. The fabricated sensor exhibited excellent performance for nitrite detection within a wide concentration interval of 1–191 μM and with a detection limit of 0.5 μM. The superior electrocatalytic response to nitrite was mainly attributed to the large surface area, minimized diffusion resistance, and enhanced electron transfer of the Cu-CLDH and AuNPs composition film. This platform offers a novel route for nitrite sensing with wide analytical applications and will supply the practical applications for a variety of simple, robust, and easy-to-manufacture analytical approaches in the future.  相似文献   

5.
In this work, a comparative study on the electrocatalytic activities of ordered mesoporous carbons (OMCs) and graphene (GR) is presented. Using voltammetry and amperometry as detection methods, four DNA bases, double-stranded DNA (dsDNA), six important electroactive compounds and various biomolecules were employed to investigate their electrochemical responses on OMC and GR modified glassy carbon electrodes (OMC/GCE and GR/GCE). The results show that OMC/GCE enhances the electron transfer kinetics of these compounds compared to GR/GCE. The discrepancy in electrochemical activities can be attributed to the different microstructures of OMC and GR, which were examined by transmission electron microscopy, X-ray photoelectron spectra, X-ray diffraction, Raman spectra and nitrogen adsorption–desorption.  相似文献   

6.
An electrochemical sensor was fabricated and used to simultaneously detect guanine and adenine. In this study, nano-copper oxide-modified glassy carbon electrode (nano-copper oxide/GCE) was prepared by electrodeposition. The nano-copper oxide/GCE was characterized by electrochemical impedance spectroscopy and scanning electron microscopy. The fabricated nano-copper oxide/GCE sensor exhibited sensitive response to guanine and adenine in 0.1 M PBS (pH 7.0). The anodic peak currents were linear with the guanine and adenine concentrations over the range of 0.05–1.2 μM with the correlation coefficients of 0.9997 and 0.9993, respectively, and the corresponding detection limits were 6 × 10−3 μM and 9 × 10−3 μM (S/N = 3), respectively. The nano-copper oxide/GCE could be applied to simultaneously detect guanine and adenine in samples with good anti-interference ability.  相似文献   

7.
在裸玻碳电极上制备得到了DNA/单壁碳纳米管/聚多巴胺复合膜修饰电极(DNA/SWNTs/PDA/GCE)。研究了呋喃唑酮在该修饰电极上的电化学行为及其与DNA的相互作用机理。结果表明:呋喃唑酮与DNA通过静电结合形成非导电复合物,该复合物阻碍了电极界面电子传输;该修饰电极对呋喃唑酮氧化还原具有明显的电催化作用,可用于呋喃唑酮的定量测定,具有快速、简单和灵敏等优点。  相似文献   

8.
Wang T  Zhang Z  Gao D  Li F  Wei H  Liang X  Cui Z  Zhang XE 《Nanoscale》2011,3(10):4275-4282
Viral capsid-nanoparticle hybrid structures constitute a new type of nanoarchitecture that can be used for various applications. We previously constructed a hybrid structure comprising quantum dots encapsulated by simian virus 40 (SV40) capsids for imaging viral infection pathways. Here, gold nanoparticles (AuNPs) are encapsulated into SV40 capsids and the effect of particle size and surface ligands (i.e. mPEG and DNA) on AuNP encapsulation is studied. Particle size and surface decoration play complex roles in AuNP encapsulation by SV40 capsids. AuNPs ≥15 nm (when coated with mPEG750 rather than mPEG2000), or ≥10 nm (when coated with 10T or 50T DNA) can be encapsulated. Encapsulation efficiency increased as the size of the AuNPs increased from 10 to 30 nm. In addition, the electrostatic interactions derived from negatively charged DNA ligands on the AuNP surfaces promote encapsulation when the AuNPs have a small diameter (i.e. 10 nm and 15 nm). Moreover, the SV40 capsid is able to carry mPEG750-modified 15-nm AuNPs into living Vero cells, whereas the mPEG750-modified 15-nm AuNPs alone cannot enter cells. These results will improve our understanding of the mechanisms underlying nanoparticle encapsulation in SV40 capsids and enable the construction of new functional hybrid nanostructures for cargo delivery.  相似文献   

9.
In the present work, we have electrochemically deposited polyaniline nanowires (PANIS) on glassy carbon electrode (GCE) from its monomer liquid crystalline template of anilinium‐3‐pentadecyl phenyl sulphonic acid (An+ PDPSA?). Further, electrode was modified by the electrochemical patterning of gold nanoparticles on the PANIS/GCE (PANIS/Au/GCE) by electrodeposition through chronoamperometry. Modified electrode characterized by electrochemical impedance, morphology, XRD, electroactive surface area, and later demonstrated its efficacy for the individual and simultaneous sensing of dopamine, ascorbic acid, serotonin, and uric acid. Finally, its performance in the real sample (blood serum) was evaluated. The superior electrocatalytic performance with higher sensitivity suggested that the modified electrode can be used as an excellent transducer for the sensing of neurotransmitters. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133 , 44351.  相似文献   

10.
The possibility to functionalize selectively with thiols or disulfides the surface of the gold nanoelectrodes of polycarbonate templated nanoelectrode ensembles (NEEs) is studied. It is shown that the Au nanoelectrodes can be coated by a self assembled monolayer (SAM) of thioctic acid (TA) or 2-mercaptoethanesulfonic (MES) acid. The study of the electrochemical behavior of SAM-modified NEEs by cyclic voltammetry (CV) at different solution pH, using ferrocenecarboxylate as an anionic redox probe (FcCOO) and (ferrocenylmethyl)trimethylammonium (FA+) as a cationic redox probe, demonstrate that the SAM-modified nanoelectrodes are permselective, in that only cationic or neutral probes can access the SAM-coated nanoelectrode surface. CV, AFM and FTIR-ATR data indicate that proteins such as casein or bovine serum albumin, which are polyanionic at pH 7, adsorb on the surface of NEEs untreated with thiols, tending to block the electron transfer of the ferrocenyl redox probes. On the contrary, the pre-treatment of the NEE with an anionic SAM protects the nanoelectrodes from protein fouling, allowing the detection of well shaped voltammetric patterns for the redox probe. Experimental results indicate that, in the case of MES treated NEEs, the protein is bound only onto the polycarbonate surface which surrounds the nanoelectrodes, while the tips of the gold nanoelectrodes remain protein free.  相似文献   

11.
Gold nanoparticles (AuNPs) have found widespread applications in life sciences. While synthesis of monodispersed AuNPs has been fairly convenient by using chemical reduction of chloroauric acid by sodium citrate, we found that AuNPs of high quality and high concentrations were not readily obtained via this method. As an example, we showed that monodispersed 13-nm AuNPs were readily synthesized at relatively low concentrations (e.g. 3.5 nM); in contrast, 13-nm AuNPs of 17 nM obtained by the direct reduction method were irregularly shaped and not well dispersed. In this work, we demonstrated that AuNPs of high concentration could be prepared by a two-step approach, i.e. chemical reduction at low concentrations and subsequent centrifugation. Compared to the direct reduction method, this new two-step method led to AuNPs with high salt resistance and high stability, which are essential for the preparation of DNA-AuNPs conjugates for DNA biodetection.  相似文献   

12.
Gold nanoparticles (AuNP) can increase the efficacy of radiation therapy by sensitising tumor cells to radiation damage. When used in combination with radiation, AuNPs enhance the rate of cell killing; hence, they may be of great value in radiotherapy. This study assessed the effects of radiation and AuNPs on mitochondrial reactive oxygen species (ROS) generation in cancer cells as an adjunct therapeutic target in addition to the DNA of the cell. Mitochondria are considered one of the primary sources of cellular ROS. High levels of ROS can result in an intracellular state of oxidative stress, leading to permanent cell damage. In this study, human melanoma and prostate cancer cell lines, with and without AuNPs, were irradiated with 6-Megavolt X-rays at doses of 0–8 Gy. Indicators of mitochondrial stress were quantified using two techniques, and were found to be significantly increased by the inclusion of AuNPs in both cell lines. Radiobiological damage to mitochondria was quantified via increased ROS activity. The ROS production by mitochondria in cells was enhanced by the inclusion of AuNPs, peaking at ~4 Gy and then decreasing at higher doses. This increased mitochondrial stress may lead to more effectively kill of AuNP-treated cells, further enhancing the applicability of functionally-guided nanoparticles.  相似文献   

13.
A novel and sensitive electrochemical DNA biosensor based on electrochemically fabricated polyaniline nanowire and methylene blue for DNA hybridization detection is presented. Nanowires of conducting polymers were directly synthesized through a three-step electrochemical deposition procedure in an aniline-containing electrolyte solution, by using the glassy carbon electrode (GCE) as the working electrode. The morphology of the polyaniline films was examined using a field emission scanning electron microscope (SEM). The diameters of the nanowires range from 80 to 100 nm. The polyaniline nanowires-coated electrode exhibited very good electrochemical conductivity. Oligonucleotides with phosphate groups at the 5′ end were covalently linked onto the amino groups of polyaniline nanowires on the electrode. The hybridization events were monitored with differential pulse voltammetry (DPV) measurement using methylene blue (MB) as an indicator. The approach described here can effectively discriminate complementary from non-complementary DNA sequence, with a detection limit of 1.0 × 10−12 mol l−1 of complementary target, suggesting that the polyaniline nanowires hold great promises for sensitive electrochemical biosensor applications.  相似文献   

14.
15.
Four novel composite catalysts have been developed by the electrodeposition of Pt onto glassy carbon electrode (GCE) modified with polyindoles: polyindole, poly(5-methoxyindole), poly(5-nitroindole) and poly(5-cyanoindole). As-formed composite catalysts are characterized by SEM, XRD and electrochemical analysis. Compared with Pt nanoparticles, respectively, deposited on the bare GCE and on the GCE modified with polypyrrole, the four newly developed composite catalysts exhibit higher catalytic activity towards formic acid electrooxidation by improving selectivity of the reaction via dehydrogenation pathway and thus mostly suppressing the generation of poisonous COads species. The enhanced performance is proposed to come from the synergetic effect between Pt and polyindoles and the increase of electrochemical active surface area (EASA) of Pt on polyindoles.  相似文献   

16.
In this study, a tetrahedral DNA nanostructure was first self-assembled; this was then conjugated with gold nanoparticles (AuNPs) and carbon nanodots (CDs). The fabricated nanocomposites allow simultaneous analysis of telomerase activity and miRNA with dual fluorescence channels. By further introducing an iRGD peptide sequence, the nanoconjuates can be conveniently transferred inside living cells for in situ imaging. The analytical performances and anti-jamming capabilities are excellent. Meanwhile, the materials are highly biocompatible for intracellular applications. Therefore, the proposed biosystem shows great promise as a powerful tool for quantitative analysis of the dual biomarkers. The strategy can also be further exploited as a versatile platform for in situ detection of many other targets for early disease diagnosis.  相似文献   

17.
苏荣荣  邓子峰 《广州化工》2011,39(23):76-77
利用层层自组装技术,通过有机偶联层胱胺将金纳米粒子修饰在玻碳电极上,得到金纳米粒子/胱胺/玻碳电极,并通过循环伏安法和电化学阻抗谱对修饰电极的电化学行为进行研究,结果表明该修饰电极具有优于裸玻碳电极的良好的电化学性能,可用于进一步的应用。  相似文献   

18.
Three-dimensional (3D) palladium (Pd) nanostructures (that is, nano-buds or nano-dendrites) are fabricated by bubble dynamic templated deposition of Pd onto a glassy carbon electrode (GCE). The morphology can be tailored by changing the precursor concentration and reaction time. Scanning electron microscopy images reveal that nano-buds or nano-dendrites consist of nanoparticles of 40–70 nm in diameter. The electrochemical reduction of oxygen is reported at such kinds of 3D nanostructure electrodes in aqueous solution. Data were collected using cyclic voltammetry. We demonstrate the Pd macroelectrode behavior of Pd nanostructure modified electrode by exploiting the diffusion model of macro-, micro-, and nano-architectures. In contrast to bare GCE, a significant positive shift and splitting of the oxygen reduction peak (vs Ag/AgCl/saturated KCl) at Pd nanostructure modified GCE was observed.  相似文献   

19.
Gold nanoparticles (AuNPs) are used as fundamental materials in chemical/biological sensor applications, such as the DNA-AuNPs complex system for colorimetric sensor. As a result, the immobilization of AuNPs on target substrates is an important issue. In this study, we investigated the deposition of AuNPs on an amine-derivatized silicon wafer by in-situ AFM. Liquid-AFM allows structural changes and reaction kinetics of biomaterials and organic/inorganic nanomaterials in liquid media to be analyzed in-situ. The results showed that AuNPs were immobilized on an aminefunctionalized silicon wafer within a period of 1.5 hr.  相似文献   

20.
The reduced state carbon dot (r-CD) is a new kind of carbon dot (CD) prepared by using sodium borohydride. Herein, we find that the r-CDs can directly reduce chloroauric acid to form gold nanoparticles (AuNPs) without adding other reducers or stabilizers. At the same time, we deduced that the hydroxyl groups (–OH) on the surfaces of r-CDs can act as both reducer and stabilizer for the synthesis of AuNPs. The AuNPs possess intrinsic catalytic activity, but compared with the AuNPs synthesized by citrate reduction, the AuNPs we prepared exhibit less excellent catalytic activity in the reduction of 4-nitrophenol (4-NP) with sodium borohydride. Conversely, for catalyzing oxidation of the substrate 3,3′,5,5′-tetramethylbenzidine (TMB) by H2O2, the AuNPs we prepared show much higher catalytic activity than the AuNPs synthesized by citrate reduction. This work may open up a new route for the applications of CDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号