首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
物理性能参数间存在着相互关系,该文将以撕裂强度为例对其进行探讨。采用了最小二乘回归和主成分回归,对撕裂强度受其他物理性能的影响关系进行详细的分析,并给出两种方法的结果分析,来体现主成分回归的优越性。其他物理性能之间的关系可以用相同的方法得到。  相似文献   

2.
用回归分析方法研究了快压出炭黑(FEF)和石蜡油两因素三变量对EPDM胶料性能的影响。结果表明,在实验范围内随着FEF用量的增加,拉伸强度、硬度、100%和300%定伸应力均呈增加的趋势,撕裂强度先增大后减小;回弹性、拉断伸长率和压缩永久变形均减小。随着石蜡油用量的增加,拉伸强度、100%和300%定伸应力、撕裂强度均减小,拉断伸长率和压缩永久变形增大,回弹性没有明显变化。采用回归分析法建立的数学模型可以准确地预测胶料的各项物理性能以及与配合剂用量之间的关系。  相似文献   

3.
采用水溶液蒸发法合成氨基乙酸-溴化钙(GCB)半有机晶体,以聚己内酯、甲苯二异氰酸酯为原料,二甲硫基甲苯二胺为扩链剂,GCB为分散粒子,通过预聚法制备了不同扩链系数的聚氨酯(PU)/GCB复合材料,并考察了其性能。结果表明,与PU相比,PU/GCB复合材料的微相分离程度明显提高;GCB使PU中氨酯羰基的氢键化程度有较大提高;GCB的加入对PU的耐热性能没有明显作用;GCB的加入使复合材料的拉伸强度和撕裂强度均有所提高,扯断伸长率呈现先减小后增大的趋势,当扩链系数为0.95、GCB质量分数为2%时,复合材料的拉伸强度和撕裂强度达到最大值,比纯PU分别提高了14%和24%。  相似文献   

4.
采用预聚法制备聚氨酯(PU)/SBA-15介孔分子筛复合材料,并采用DSC、SEM、DMA和TG等方法对复合材料进行表征。结果表明,PU/SBA-15分子筛复合材料与纯聚氨酯相比,拉伸强度有所提高,耐撕裂性能明显增大;复合材料的耐热性能和耐溶剂性能提高不明显;SBA-15分子筛对聚氨酯软硬段的微相分离影响较小。  相似文献   

5.
采用含浸工艺,以不同化学涂层胶含浸预处理纤维材料,测试预处理前后的撕裂强度变化、力学性能变化,研究不同化学涂层纤维撕裂的影响因素。结果表明:较低模量聚氨酯(PU)含浸材料可以降低纤维撕裂强度的减少值;同时,有机硅(Si-PU)含浸涂层可以部分提高纤维的撕裂强度,并且,随着有机硅改性含量的提高,效果愈加明显,高有机硅含量含浸材料可以有效提高纤维撕裂强度。  相似文献   

6.
以不同结构聚酯多元醇(PEA、PEPA、PBA、PCL)为软段,4,4′-二苯基甲烷二异氰酸酯(MDI)和1,4-丁二醇(BDO)为硬段采用预聚法合成了聚氨酯(PU)弹性体。讨论了MDI/BDO体系中软段种类、相对分子质量、预聚体NCO含量及催化剂对PU弹性体力学性能的影响,并与TDI/MOCA体系进行比较。结果表明,当软段相对分子质量相同时,以PBA为原料合成的PU弹性体硬度最高,弹性体的拉伸强度、伸长率和冲击弹性均随软段相对分子质量的增加而增加;提高预聚体NCO含量可使PU弹性体的硬度、撕裂强度和300%模量增加;但加入催化剂的PU弹性体,其拉伸强度下降16.6%~20.1%;MDI/BDO体系PU弹性体的撕裂强度和冲击弹性较高,TDI/MOCA体系PU弹性体的拉伸强度较好、永久变形较低。  相似文献   

7.
研究了以不同相对分子质量的低不饱和度聚醚多元醇、二异氰酸酯(MDI.TDI)和扩链剂(1.4-BDO.MOCA)为原料制备PU弹性体的力学性能。结果表明:PU弹性体的硬度、拉伸强度和撕裂强度随NCO基含量增加而提高。逐渐提高聚醚的相对分子质量,PU的拉伸强度和撕裂强度下降,冲击弹性提高。相对分子质量为2000的TDB-PU比相同相对分子质量PPG-PU的综合力学性能要好。  相似文献   

8.
聚氨酯/13X分子筛复合材料的制备   总被引:1,自引:1,他引:0  
采用预聚法制备了聚氨酯(PU)/13X分子筛复合材料。考察了在两种硬度下,分子筛含量对聚氨酯弹性体力学性能、耐溶剂性能的影响。结果表明,随着分子筛质量分数的增加,复合材料的拉伸强度、撕裂强度均呈上升趋势。当分子筛质量分数为5%、邵A硬度为70时其复合材料拉伸强度为31 MPa,撕裂强度达48.7 kN/m;当分子筛质量分数为5%、邵A硬度为80时其复合材料拉伸强度为42 MPa,撕裂强度达最大值61 kN/m。随着分子筛质量分数的增加,2种复合材料的溶胀度也有不同程度的下降。DSC分析表明,分子筛使PU/13X复合材料的结晶形态发生了改变,提高了其耐热温度。  相似文献   

9.
以四氢呋喃均聚醚和甲苯二异氰酸酯为原料,采用分子蒸馏法合成PU预聚体,以3,3′-二氯-4,4′-二氨基二苯甲烷为扩链剂制备低游离甲苯二异氰酸酯浇注型PU弹性体,并对其性能进行研究。结果表明,与常规PU预聚体与扩链剂的混合体相比,低游离PU预聚体与扩链剂的混合体具有良好的流动性和较快的固化速度;低游离PU弹性体与常规PU弹性体拉伸强度和撕裂强度相差不大,但前者回弹值较大、压缩永久变形较小、动态性能较好。  相似文献   

10.
以不同相对分子质量的聚醚多元醇(PPG)、TDI和3,5-二乙基甲苯二胺(DETDA)为原料,采用溶剂法合成了聚氨酯(PU)弹性体,分别研究了溶剂种类、NCO含量、聚醚多元醇相对分子质量、扩链系数等对PU弹性体力学性能的影响。结果表明,二甲苯对PU弹性体性能影响最小;PU弹性体的硬度、定伸模量、拉伸强度和撕裂强度随聚醚多元醇的相对分子质量的升高而下降,冲击弹性、伸长率和永久变形随聚醚多元醇的相对分子质量的升高而上升;当预聚体NCO质量分数为6.30%、扩链系数为0.95时,PU弹性体的综合力学性能最佳。  相似文献   

11.
环保型双组分聚氨酯弹性体的研制   总被引:3,自引:0,他引:3  
采用聚醚多元醇、MDI和E-300为原料,合成了环保型双组分聚氨酯弹性体。讨论了纯MDI、E-300、异氰酸酯指数等对环保型双组分聚氨酯弹性体的影响。结果表明,采用这些原料可以制得性能良好的环保型双组分聚氨酯弹性体制品,当其制品邵A硬度为80时,拉伸强度为15MPa,撕裂强度为64kN/m,伸长率为500%。  相似文献   

12.
以纯4,4′-二苯基甲烷二异氰酸酯(MDI)MDI-100、液化MDI(C-MDI)、MDI-50和四氢呋喃均聚醚(PTMG)为原料合成聚氨酯(PU)预聚体,再分别与KD和KC扩链剂制备PU弹性体。研究了1,3-BDO含量、异氰酸酯类型、预聚体NCO基含量、聚醚软段相对分子质量对PU弹性体力学性能的影响。结果表明,提高1,3-BDO含量可使PU弹性体的硬度、撕裂强度和冲击弹性明显下降;纯MDI弹性体综合力学性能最好,液化MDI次之,MDI-50最差;提高预聚体NCO基含量可使弹性体的硬度、300%定伸应力和撕裂强度明显提高,拉断伸长率和冲击弹性则下降;软段相对分子质量为1000时,PU弹性体的300%定伸应力、拉伸强度和撕裂强度均增加;软段相对分子质量为1800以上,拉断伸长率和冲击弹性增加。  相似文献   

13.
采用二步法以聚己二酸丁二醇酯(PBA)、4,4-′二苯基甲烷二异氰酸酯(MDI)和二元醇1,4-丁二醇(BDO)或混合扩链剂(二元醇和三元醇)合成了聚氨酯(PU)弹性体。研究了软段相对分子质量、预聚体-NCO质量分数和扩链剂对聚氨酯弹性体力学性能的影响。实验结果表明:PBA相对分子质量大,PU断裂伸长率和冲击弹性好;PU硬度、撕裂强度和模量随预聚体-NCO相对质量分数增加而增加;弹性体的交联密度过高,硬度和撕裂强度下降。  相似文献   

14.
以聚酯(PEA、PEPA)或聚醚(PTMG)和TDI为原料合成聚氨酯(PU)预聚体,用三异丙醇胺(TIPA)和1,4-丁二醇(BDO)的混合物作扩链剂制备PU弹性体。讨论了软段相对分子质量、弹性体交联点相对分子质量和扩链剂的种类对PU弹性体性能的影响。结果表明,PU弹性体的硬度、拉伸强度、300%模量和撕裂强度随软段相对分子质量的增加而下降,而伸长率和冲击弹性随软段相对分子质量的增加而增加;交联点相对分子质量为6600时,PTMG2000为软段的PU弹性体的拉伸强度最高,达到28.44MPa;与TMP/BDO扩链的聚酯型PU弹性体相比,TIPA/BDO扩链的弹性体的拉伸强度、伸长率和撕裂强度均较高,而硬度、300%模量和冲击弹性差异不大。  相似文献   

15.
首先以聚己内酯多元醇(PCL)、4,4’-二苯基甲烷二异氰酸酯(MDI)、液化MDI和MDI-50为原料合成聚氨酯(PU)预聚体,再用混合扩链剂制备聚氨酯弹性体。讨论了预聚体异氰酸酯基(NCO)含量、异氰酸酯类型、1,3-丁二醇(1,3-BDO)含量、聚酯软段相对分子质量对聚氨酯弹性体力学性能的影响。结果表明:提高预聚体NC0基含量可使弹性体的硬度、300%定伸应力、拉伸强度和撕裂强度明显提高,拉断伸长率和冲击弹性则下降;纯MDI弹性体综合力学性能最好,液化MDI次之,MDI-50最差;提高1,3-BDO含量可使弹性体的硬度、撕裂强度和冲击弹性明显下降;软段相对分子质量为1000的聚氨酯弹性体的硬度、300%定伸应力、拉伸强度和撕裂强度较高,软段相对分子质量为2000的聚氨酯弹性体的拉断伸长率和冲击弹性较高。  相似文献   

16.
The intercalated nanocomposites of polyurethane (PU) with organic-montmorillonite (OMMT) treated by cetryltrimethyl ammonium bromide was prepared. The interlayer spacing of PU/OMMT nanocomposites was 3–4 nm. The interface interaction of PU/OMMT nanocomposites was improved compared to that of PU/montmorillonite (MMT) composites. The orderly arrangement of the PU chains was hindered because of strong interface interaction between the silicate layers dispersed in the nanometer and PU chains. By adding 2 wt% OMMT to PU, tensile strength and tear strength of the PU/OMMT composites were increased from 10.5 MPa and 36.4 KN/m to 13.8 MPa and 42.2 KN/m, respectively. The tensile strength and tear strength increased with OMMT content firstly, reaching its maximum when the OMMT content was 8 wt%. After that, the tensile strength and tear strength decreased with the further increase of the OMMT content. Compared to that of PU, the elongation at break of the PU/OMMT nanocomposites increased, indicating that the stretch of PU/OMMT nanocomposites increased.  相似文献   

17.
Elastomer foams based on EVA, PU, and EVA/PU blends formulated for shoe‐sole applications were prepared by a supercritical N2 batch foaming process and characterized for physicomechanical, friction and abrasion properties. The blending of EVA with PU was aimed for improving the friction and wear characteristics of the EVA based foams. All of the foams prepared showed spherical cells with closed‐cell morphology and the cell sizes varied with varying the EVA/PU blend ratio and CaCO3 content of the foams. The properties such as hardness and resilience, friction coefficients and abrasion resistance improved for the EVA/PU blend foams compared to the EVA foam, but their compression set, tensile strength, and tear strength were inferior to the EVA foam. The incorporation of CaCO3 filler increased density, hardness, tensile strength, and tear strength of the EVA/PU blend foams but decreased resilience, compression set, friction coefficients, and abrasion resistance. The improvement in friction coefficients and wear resistance obtained in the EVA/PU blend foams was significant for shoe‐sole applications. POLYM. ENG. SCI., 2017. © 2017 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号