首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of magnesium content on the phase structure and electrochemical properties of Ml1−x Mg x Ni2.78Co0.50Mn0.11Al0.11 (x = 0.05, 0.10, 0.20, 0.30) hydrogen storage alloys was investigated. The results of X-ray diffraction reveal that all the alloys consist of the major phase (La, Mg)Ni3 and the secondary phase LaNi5. With increase in x, the relative content of the (La, Mg)Ni3 phase increases gradually, and the maximum capacity and low temperature dischargeability of the alloy electrodes first increase and then decrease. When x is 0.20, the discharge capacity of the alloy electrode reaches 363 mAh g−1 at 293 K and 216 mAh g−1 at 233 K, respectively. The high rate dischargeability of the alloy electrodes increases with increase in x. When the discharge current density is 1200 mA g−1, the high rate dischargeability of the alloy electrodes increases from 22.0% to 50.4% with x increasing from 0.05 to 0.30. The cycling stability of the electrodes decreases gradually with increase in magnesium content.  相似文献   

2.
The melt-spinning technique is applied to the preparation of the nanocrystalline and amorphous Mg2Ni-type alloys with nominal compositions of Mg2Ni1−xMnx (x = 0, 0.1, 0.2, 0.3, 0.4). The as-spun alloy ribbons possessing a continuous length, a thickness of about 30 μm and a width of about 25 mm were prepared. The structures of the as-spun alloy ribbons are characterized by XRD and TEM. The electrochemical performances of the as-spun alloy ribbons are measured by an automatic galvanostatic system. The results show that no amorphous structure is detected in the as-spun Mg2Ni alloy, whereas the as-spun Mg2Ni0.6Mn0.4 alloy displays a nanocrystalline and amorphous structure, confirming that the substitution of Mn for Ni notably intensifies the amorphous forming ability of the Mg2Ni-type alloy. The amorphization degree of the as-spun alloys containing Mn increases with increasing spinning rate. The melt spinning also significantly enhances the electrochemical performances such as the discharge capacity and the electrochemical cycle stability of the Mn-containing alloys. Furthermore, the high rate dischargeability (HRD) of the (x ≤ 0.1) alloys increases with an increase in the spinning rate, while for the (x ≥ 0.2) alloys, the HRD exhibits a maximum value at a particular spinning rate, and it varies with the change in Mn contents of the alloys.  相似文献   

3.
Mg-Ni-Ti-based hydrogen storage alloys Mg0.9Ti0.1Ni1−xMx (M = Co, Mn; x = 0, 0.1, 0.2) were prepared by means of mechanical alloying (MA). The effects of partial substitution of Ni with Co or Mn on the microstructures and electrochemical performance of the alloys were investigated. The result of X-ray diffraction (XRD) shows that the alloys exhibit dominatingly amorphous structures. The electrochemical measurements indicate that the substitution of Ni can dramatically enhance the cycle stability of Mg-Ni-Ti-based alloys. After 50 charge/discharge cycles, the capacity retention rate of the alloy electrodes increases from 30% (Mg0.9Ti0.1Ni) to 59% (Mg0.9Ti0.1Ni0.9Co0.1), 58% (Mg0.9Ti0.1Ni0.9Mn0.1), 46% (Mg0.9Ti0.1Ni0.8Co0.2) and 53% (Mg0.9Ti0.1Ni0.8Mn0.2), respectively. Among these alloys, the Mg0.9Ti0.1Ni0.9Mn0.1 alloy presents better overall electrochemical performance. The cyclic voltammograms (CV) and anti-corruption test reveal that the electrochemical cycle stability of these alloys is improved by substituting Ni with Co or Mn.  相似文献   

4.
Nanocrystalline TiFe alloys with different morphology and microstructure were synthesized by mechanical alloying from the elemental powders with varied milling time. The particle morphology distinctly changes from globular to slaty between the 10th and 15th h of milling and then becomes spherical again after 30 h. The average particle size decreases continuously with milling time from about 50 μm (10 h milling) to 1–2 μm for the 30 h milled sample. X-ray diffraction analysis showed that after 15 h of milling alloying has already started. The initial mixture of metal powders transformed into amorphous or fine nanocrystalline material after 20 h. Further milling did not change the microstructure noticeably, i.e. it remaied nanocrystalline with some amount of amorphous fraction. Nanocrystalline Fe was also present in the end product. DTA analysis displayed exothermic effects due to crystallization reactions, revealing that the end product also contains the amorphous phase. Electrochemical hydrogen charge/discharge measurements of the as-milled alloys were carried out under galvanostatic conditions. It was found that with increased milling time the discharge capacity increased and reached a value of 230 mAh g−1 for the 30 h milled sample, which is a substantially higher value than those published for this alloy composition. The cycle life of the alloy with the finest nanostructure is, however, shorter compared to the coarser nanostructures.  相似文献   

5.
LiFe0.4Mn0.6−x Ni x PO4/C(x = 0, 0.05, 0.1, and 0.2) composite cathode materials for lithium ion batteries have been prepared by the co-precipitation method using oxalic acid as a precipitator. The structure and morphology of precursors and products have been investigated. Electrochemical tests demonstrate that LiFe0.4Mn0.55Ni0.05PO4 can deliver a specific capacity of 142 mAh g−1 at 0.1 C, and retains 133 mAh g−1 after 60 cycles. The rate performance of LiFe0.4Mn0.6PO4 is obviously improved by doping Ni. The capacity of LiFe0.4Mn0.55Ni0.05PO4 at 2 C is 110 mAh g−1.  相似文献   

6.
Carbon free LiFe1−x Mn x PO4 (x = 0, 0.05, 0.1, 0.2, 0.4) cathode materials were prepared by a direct-hydrothermal process at 170 °C for 10 h. The structural and electrochemical properties of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), charge–discharge experiments, cyclic voltammetry (CV) and alternating current (AC) impedance spectroscopy. The electrochemical performance of LiFePO4 prepared in this manner showed to be positively affected by Mn2+-substitution. Among the Mn2+-substitution samples, the LiFe0.9Mn0.1PO4 exhibited an initial discharge capacity of 141.4 mA h g−1 at 0.1 C, and the capacity fading is only 2.7% after 50 cycles.  相似文献   

7.
A new type of Li1−x Fe0.8Ni0.2O2-Li x MnO2 (Mn/(Fe+Ni+Mn)=0.8) material was synthesized at 350 °C in an air atmosphere by a solid-state reaction. The material had an XRD pattern that closely resembled that of the original Li1−x FeO2-Li x MnO2 ((Fe+Ni+Mn)=0.8) with much reduced impurity peaks. It was composed of many large particles of about 500–600 nm and small particles of about 100–200 nm, which were distributed among the larger particles. The Li/Li1−x Fe0.8Ni0.2O2-Li x MnO2 cell showed a high initial discharge capacity above 192 mAh/g, which was higher than that of the parent Li/Li1−x FeO2-Li x MnO2 (186 mAh/g). This cell exhibited not only a typical voltage plateau in the 2.8 V region, but also an excellent cycle retention rate (96%) up to 45 cycles. We suggest a unique role of doped nickel ion in the Li/Li1−x Fe0.8Ni0.2O2-Li x MnO2 cell, which results in the increased initial discharge capacity from the redox reaction of Ni2+/Ni3+ between 2.0 and 1.5 V region.  相似文献   

8.
A series of LiM1xM2yMn2−x−yO3.8F0.2 (M1 = Cr, M2 = V; x = y = 0.2) cathodes, viz., LiMn2O3.8F0.2, LiCr0.2Mn1.8O3.8F0.2 and LiCr0.2V0.2Mn1.6O3.8F0.2 along with native LiMn2O4 have been synthesized by Citric Acid assisted Modified (CAM) sol–gel method, with a view to understand the effect of synthesis methodology and the effect of dual category dopants, viz., anion and/or cation upon spinel cathodes individually. An acceptable capacity retention (94%) observed up to 50 cycles for native LiMn2O4 cathodes is attributed to the significance of CAM sol–gel method. Similarly, the encouraging charge–discharge results of LiMn2O3.8F0.2 (130 mAh g−1) and LiCr0.2Mn1.8O3.8F0.2 (142 mAh g−1) cathodes revealed a possible augmentation in the reversible capacity behavior of the spinels upon F substitution at 32e site and the simultaneous substitution of Cr3+ and F at 16d and 32e sites respectively.  相似文献   

9.
Ca1−xMnxTiO3 (x = 0–1.0) perovskite ceramics were prepared by conventional solid state reaction. XRD was used to confirm the microcrystalline nature of the Ca1−xMnxTiO3 crystals. For the x = 0 composition, the XRD patterns were those of a single orthorhombic perovskite while for x = 0.2–0.8, the XRD spectra were those of two orthorhombic perovskite phases: CaTiO3 and MnTiO3. For x = 1, XRD pattern was that of the MnTiO3 phase only. The morphology and particle size of the grains of the different composition were observed using SEM. The size of the particles increased from 0.2 μm to 2–3 μm as x increased from 0 to 0.6. The room temperature dielectric constant at the frequency of 110 kHz for the x = 0.2 and x = 1.0 ceramics were ∼3.41 × 104 and ∼4.99 × 103, respectively. The ESR linewidth of samples increased with increasing manganese content due to the formation of magnetic cluster. Our ESR studies indicate that the manganese ions are in the Mn4+ state.  相似文献   

10.
Double doped spinel LiCo x Ni y Mn2−xy O4 (x = y = 0.25) have been synthesised via sol–gel method using different chelating agents viz., acetic acid, maleic acid and oxalic acid to obtain 5 V positive electrode material for use in lithium rechargeable batteries. The sol–gel route endows lower processing temperature, lesser synthesis time, high purity, better homogeneity, good control of particle size and surface morphology. Physical characterizations of the synthesized powder were carried out using thermo-gravimetric and differential thermal analysis (TG/DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The electrochemical behaviour of the calcined samples has been carried out by galvanostatic charge/discharge cycling studies in the voltage range 3–5 V. The XRD patterns reveal crystalline single-phase spinel product. SEM photographs indicate micron sized particles with good agglomeration. The charge–discharge studies show LiCo0.25Ni0.25Mn1.5O4 synthesized using oxalic acid to be as a promising cathode material as compared to other two chelating agents and delivers average discharge capacity of 110 mA h g−1 with low capacity fade of 0.2 mA h g−1 per cycle over the investigated 15 cycles.  相似文献   

11.
This article reports the characterization of thin films sputtered from CuAl1?xCaxO targets (= 0, 0.05, 0.1, 0.15, and 0.2) at room temperature. All films exhibit amorphous/nanocrystalline structures. Their transparency increases slightly with the addition of Ca. Furthermore, the resistivity decreases as the Ca/Al atomic ratio increases. Transmission electron microscopy with energy dispersive spectroscopy mapping indicates that the composition is uniform throughout the films deposited from the highest Ca doping concentration target. Some nanocrystals are present at the top surface of the CuAl0.8Ca0.2O thin film as well as the interface region between the CuAl0.8Ca0.2O thin film and the glass substrate, whereas the interior of the film is pretty amorphous with some embedded nanocrystals. X‐ray photoelectron spectroscopy shows that the Cu2+/Cu+ atomic ratio increases with the Ca/Al atomic ratio, indicating the enhancement of p‐type conductivity from the nonisovalent Cu–O alloying.  相似文献   

12.
Bismuth-layer-structured (Ba1−x Mn x )Bi4Ti4O15 (0.0 ≤ x ≤ 0.8) ceramics were prepared by a Sol–Gel method. The effects of the amount of Mn-doped on the phase structure, the dielectric as well as piezoelectric properties of BaBi4Ti4O15 ceramics were studied. The X-ray diffraction results revealed that the introduction of Mn resulting in distortion of lattice, which contributes to the crystallization of the layered structure grains. The densification, dielectric and piezoelectric properties of the (Ba1−x Mn x )Bi4Ti4O15 ceramics were significantly promoted by the Mn substitution of Ba. When the value of doping amount Mn is 0.4, the (Ba0.6Mn0.4)Bi4Ti4O15 ceramic exhibited a high piezoelectric constant (d 33 = 7.5 pC/N), a big relatively dielectric constant (ε r  = 764.26) and a small dielectric loss (tanδ = 0.0124).  相似文献   

13.
The Li-rich layered cathode material, Li[Ni0.2Li0.2Mn0.6]O2, was synthesized via a “mixed oxalate” method, and its structural and electrochemical properties were compared with the same material synthesized by the sol–gel method. X-ray diffraction (XRD) shows that the synthesized powders have a layered O3–LiCoO2-type structure with the R-3m symmetry. X-ray photoelectron spectroscopy (XPS) indicates that in the above material, Ni and Mn exist in the oxidation states of +2 and +4, respectively. The layered material exhibits an excellent electrochemical performance. Its discharge capacity increases gradually from the initial value of 228 mA hg−1 to a stable capacity of over 260 mA hg−1 after the 10th cycle. It delivers a larger capacity of 258 mA hg−1 at the 30th cycle. The dQ/dV curves suggest that the increasing capacity results from the redox-reaction of Mn4+/Mn3+.  相似文献   

14.
The structural and dielectric properties of SHS-produced yNi1 − x Cd x Fe2O4 + (1 − y)Ba0.8Sr0.2TiO3 (x = 0.2, 0.4, 0.6; y = 15, 30, 45%) magnetoelectric composites were characterized by XRD, SEM, and resistivity/dielectric measurements. SEM images reveal that SHS reaction can produce two pure phases simultaneously. The grown Cd-substituted nickel ferrite grains were well dispersed in a BST matrix. A decrease in resistivity with temperature shows the semiconducting nature of synthesized samples. The dielectric results demonstrated an attractive response of dielectric constant to frequency and temperature. The Curie temperature of about 480°C was observed in the Ni0.4Cd0.6Fe2O4 + Ba0.8Sr0.2TiO3 composite.  相似文献   

15.
Aiming at preparation of shape memory alloys (SMAs), we explored the SHS of Cu1 − x Zn1 − y Al1 − z alloys (0.29 < x < 0.30, 0.74 < y < 0.75, and 0.83 < z < 0.96). The most pronounced shape memory effect was exhibited by the alloys of the following compositions (wt %): (1) Cu(70.6)Zn(25.4)Al(4.0), (2) Cu(70.1)Zn(25.9)Al(4.0), and (3) Cu(69.9)Zn(26.1)Al(4.0). The effect of process parameters on the synthesis of CuZnAl alloys was studied by XRD, optical microscopy, and scanning electron microscopy (SEM). The grain size of CuZnAl was found to depend on the relative amount of the primary CuZn and AlZn phases. Changes in the transformation temperature and heat of transformation are discussed in terms of ignition intensity and compaction. Mechanism of the process depends on the level of the temperature attained relative to the melting point of components. At the melting point of AlZn, the process is controlled by the solid-state diffusion of AlZn into a product layer. The ignition temperature for this system depends on the temperature of the austenite-martensite transformation in CuZnAl alloys. The composition and structure of the products was found to markedly depend on process parameters. The SHS technique has been successfully used to prepare a variety of SMAs.   相似文献   

16.
A series of nanocrystalline Ni0.6 − x Zn x Cu0.4Fe2O4 ferrites (x = 0, 0.1, 0.2, 0.3, 0.4) was prepared by autocombustion route. Formation of the spinel phase (without any impurity phase) was confirmed by X∂ray diffraction. The lattice parameter of synthesized ferrites was found to linearly increase with increasing x. The octahedral and tetrahedral vibration modes were studied by Fourier transform IR spectroscopy. SEM images revealed compact agglomeration exhibiting grain growth with an increase in x. The dependence of saturation magnetization on the mol fraction of zinc was studied.  相似文献   

17.
High quality crednerite CuMnO2 was prepared by solid state reaction at 950 °C under argon flow. The oxide crystallizes in a monoclinically distorted delafossite structure associated to the static Jahn–Teller (J–T) effect of Mn3+ ion. Thermal analysis showed that it converts reversibly to spinel Cu x Mn3−x O4 at ~420 °C in air and further heating reform the crednerite above 940 °C. CuMnO2 is p-type, narrow semiconductor band gap with a direct optical gap of 1.31 eV. It exhibits a long-term chemical stability in basic medium (KOH 0.5 M), the semi logarithmic plot gave an exchange current density of 0.2 μA cm−2 and a corrosion potential of ~−0.1 VSCE. The electrochemical oxygen insertion/desinsertion is evidenced from the intensity–potential characteristics. The flat band potential (V fb = −0.26 VSCE) and the holes density (N A  = 5.12 × 1018 cm−3) were determined, respectively, by extrapolating the curve C 2 versus the potential to the intersection with C 2  = 0 and from the slope of the Mott–Schottky plot. From photoelectrochemical measurements, the valence band formed from Cu-3d wave function is positioned at 5.24 ± 0.02 eV below vacuum. The Nyquist representation shows straight line in the high frequency range with an angle of 65° ascribed to Warburg impedance originating from oxygen intercalation and compatible with a system under mass transfer control. The electrochemical junction is modeled by an equivalent electrical circuit thanks to the Randles model.  相似文献   

18.
LiCoxMn1−xPO4/C nanocomposites (0 ≤ x ≤ 1.0) were prepared by a combination of spray pyrolysis at 300 °C and wet ball-milling followed by heat treatment at 500 °C for 4 h in 3% H2 + N2 atmosphere. X-ray diffraction analysis indicated that all samples had the single phase olivine structures indexed by orthorhombic Pmna. The lattice parameters linearly decreased with increasing cobalt content, which confirmed the existence of solid solutions. It was clearly seen from the scanning electron microscopy observation that the LiCoxMn1−xPO4/C samples were agglomerates with approximately 100 nm primary particles. The LiCoxMn1−xPO4/C nanocomposites were used as cathode materials for lithium batteries, and electrochemical performance was comparatively investigated with cyclic voltammetry and galvanostatic charge–discharge test using the Li?1 M LiPF6 in EC:DMC = 1:1?LiCoxMn1−xPO4/C cells at room temperature. The cells at 0.05 C charge–discharge rate delivered first discharge capacities of 165 mAh g−1 (96% of theoretical capacity) at x = 0, 136 mAh g−1 at x = 0.2, 132 mAh g−1 at x = 0.5, 125 mAh g−1 at x = 0.8 and 132 mAh g−1 (79% of theoretical capacity) at x = 1.0, respectively. While the first discharge capacity increased with the cobalt content at high charge–discharge rates more than 0.5 C due to higher electronic conductivity of LiCoPO4 in comparison with LiMnPO4, the cycleability of cell became worse with increasing the amount of cobalt. The existence of Mn2+ seemed to enhance the cycleability of LiCoxMn1−xPO4/C nanocomposite cathode.  相似文献   

19.
The electrochemical properties of amorphous vanadium pentoxide (V2O5) thin films deposited by reactive r.f.-sputtering were investigated using galvanostatic charge/discharge cycling and galvanostatic intermittent titration technique (GITT). As x in Li x V2O5−y increased (x = 0–2.0), the electromotive force of the lithium (Li)∣1 M LiClO4–propylene carbonate∣Li x V2O5−y cell decreased gradually without a potential plateau or an abrupt potential reduction, demonstrating that an irreversible structural change did not occur in the entire Li content. Chemical diffusivity of the Li ion in the Li x V2O5−y thin film measured using GITT was determined to be 4 × 10−13–7 × 10−14 cm2 s−1 in the Li content range investigated.  相似文献   

20.
The stability limits of the solid solutions La(Sr1 − x Ca x )2Mn2O7 (x = 0−1) are investigated using isothermal annealing-quenching methods in combination with X-ray powder diffraction analysis. It is established that the formation of Ruddlesden-Popper phases occurs in the calcium concentration range x = 0−0.06. The replacement of strontium by calcium in this concentration range leads to an increase in the thermodynamic stability of the structure under investigation. Original Russian Text ? O.M. Fedorova, A.M. Yankin, I.A. Zvereva, S.G. Titova, V.F. Balakirev, 2008, published in Fizika i Khimiya Stekla.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号