首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This experimental study concerns the characteristics of vortex flow in a concentric annulus with a diameter ratio of 0.52, whose outer cylinder is stationary and inner one is rotating. Pressure losses and skin friction coefficients have been measured for fully developed flows of water and of 0.4% aqueous solution of sodium carboxymethyl cellulose (CMC), respectively, when the inner cylinder rotates at the speed of 0-600 rpm. Also, the visualization of vortex flows has been performed to observe the unstable waves. The results of present study reveal the relation of the bulk flow Reynolds number Re and Rossby number Ro with respect to the skin friction coefficients. In somehow, they show the existence of flow instability mechanism. The effect of rotation on the skin friction coefficient is significantly dependent on the flow regime. The change of skin friction coefficient corresponding to the variation of rotating speed is large for the laminar flow regime, whereas it becomes smaller as Re increases for the transitional flow regime and, then, it gradually approach to zero for the turbulent flow regime. Consequently, the critical (bulk flow) Reynolds number Rec decreases as the rotational speed increases. Thus, the rotation of the inner cylinder promotes the onset of transition due to the excitation of Taylor vortices.  相似文献   

2.
This paper is concerned with the relationship between the onset and the development of the Taylor instabilities and their treatment as turbulent flows in the most accepted turbulence models (Constantinescu (1); Ng-Pan (2); Hirs (3)) used with the Reynolds equation, in the range of 41.3√R/C < Re < 2000. The authors show that in between these limits there is a transition regime where the velocity and pressure profiles are fundamentally different from either a Couette flow or a fully developed turbulent flow. Thus the issue under consideration is whether the flow formations observed during Taylor instability regimes should be simulated using the widely accepted turbulence models as they presently are modeled in microscale clearance flows. We are considering the flow of light silicone oil in gaps varying from 3.302 mm (0.13 in.) to 0.127 mm (0.005 in.) between two concentric cylinders, with the inner cylinder rotating. The computational engine used in this study is a well-established and a tried software package: CFD-ACE+. It was found that the Taylor vortices (cells) begin to form at certain, but different, “critical” speeds, function of clearance size, and as the speed grows, the vortices become fully developed and evolve further into wavy vortices. Calculations show that both the 1st and 2nd critical Taylor numbers and Reynolds numbers are functions of the clearance size. The Taylor numbers decrease, while the Reynolds numbers increase with the decrease in clearance size. The onset of both instabilities is clearly characterized by the discontinuities in the Torque-√Ta (or Torque – Re) curve slope. The calculations presented here show that the slope changes in the above-mentioned graphs are due to the changes in the average velocity gradient on the outer cylinder and not to a change in the actual viscosity as it is implemented by the turbulence models mentioned above. Finally a comparison is made between present calculations and the data of Roberts (4), Cole (5), Walowit et al. (6), Weinstein (7), Koschmieder (8), and DiPrima (9).  相似文献   

3.
陈涛  陈学东  艾志斌  王华 《压力容器》2010,27(1):1-4,34
针对某公司服役30000 h后的乙烯裂解炉管KHR 45A高温氧化现象进行了试验研究。通过光学显微镜和扫描电镜分析了KHR 45A炉管内、外壁附近显微组织变化情况。结果表明:内、外壁附近均有氧化物、剥蚀区和碳化物区三个区域;内、外表层均有连续的Cr2O3层,亚表层SiO2呈树枝状沿晶界向炉管内部扩展,内、外壁附近剥蚀区分别约180μm和280μm;炉管材料内外壁氧化现象与Petkovic-Luton和Ramanarayan模型基本吻合,其内、外壁附近显微组织变化与该模型第Ⅲ阶段一致。  相似文献   

4.
Thermophoresis in dense gases is studied by using a multi-scale approach and Born-Yvon-Green (BYG) equation. The problem of a particle movement in an ambient dense gas under temperature gradient is divided into inter and outer ones. The pressure gradient in the inner region is obtained from the solutions of BYG equation. The velocity profile is derived from the conservation equations and calculated using the pressure gradient, which provides the particle velocity in the outer problem. It is shown that the temperature gradient applied to the quiescent ambient gas induces some pressure gradient and thus flow tangential to the particle surface in the interfacial region. The mechanism that induces the flow may be the dominant source of the thermophretic particle movement in dense gases. It is also shown that the particle velocity has a nonlinear relationship with the applied temperature gradient and decreases with increasing temperature.  相似文献   

5.
This paper presents vector fields, three dimensional mean velocities, turbulent intensities, turbulent kinetic energy and Reynolds shear stresses measured in the X-Y plane of the gas swirl burner with a cone type baffle plate by using an X-type hot-wire probe. This experiment is carried out at the flow rates of 350 and 450 ℓ/min which are equivalent to the combustion air flow rate necessary to release 15,000 kcal/hr in a gas furnace. The results show that the maximum axial mean velocity component exists around the narrow slits situated radially on the edge of a burner. Therefore, there is some entrainment of ambient air in the outer region of a burner. The maximum values of turbulent intensities occur around the narrow slits and in front of a burner up to X/R=1.5. Moreover, the turbulent intensity components show a relatively large value in the inner region due to the flow diffusion and mixing processes between the inclined baffle plate and the swirl vane. Consequently, the combustion reaction is expected to occur actively near these regions.  相似文献   

6.
The thermal expansion of pipes depends on both the temperature of the pipe and the expansion coefficient of the piping material at the operating temperature. In the case of a double-layered tube consisting of two different tube materials, the thermal deformation behaviors are dependent on the relative tube sizes, thermal expansion coefficients, and the mechanical properties of the inner and outer tubes. For the safe and reliable application of double-layered tubes that are fabricated by hydroforming, the thermal stress in circumferential direction and the gap between the inner and outer tubes need to be analyzed over a wide range of temperatures (?50°C~200°C). As it is difficult to measure the thermal stress and the gap between tubes at operating temperature, this study has analytically investigated the thermal deformation behavior of a double-layered tube. From the analytical model, the effect of hydraulic pressure, residual stress, and the relative sizes of the inner and outer tubes on the resultant thermal deformation, such as the circumferential thermal stress and the gap between inner and outer tubes, has been analyzed. The analytical results provide a theoretical basis for determining the reliable operating temperature of double-layered tubes.  相似文献   

7.
Pitot tubes are commonly used to measure gas flow in ducts. The integration of the velocity profile which allows the calculation of the gas flow is described in several international standards such as ISO 3966 or ISO 10780.The common working principle of Pitot tubes is based on the measurement of the differential pressure between the two different pressure taps. The gas velocity is related to this differential pressure through a flow coefficient depending on the Pitot tube type.In case of stable flow, in a pressurized duct, fluctuations of the in-line pressure, even low, can occur. If the response times of the two pressure lines (static and total) between the Pitot tube head and the differential pressure sensor are not equal, these fluctuations can be seen as fluctuations of the measured differential pressure and then of the calculated velocity.This phenomenon is investigated for different design of Pitot tubes and the difference in behaviour of the two pressure lines is highlighted.  相似文献   

8.
A mathematical model is developed to calculate temperature distribution of a slab in a hot rolled reheating furnace by considering thermal radiation in the furnace and transient conduction in the slab. The furnace is modeled as a radiating medium with spatially varying temperature. Radiative heat flux within the furnace, including the effects of the furnace walls, combustion gases, skid beams, and buttons, is calculated through finite volume method with weighted sum of gray gases model and is applied as the boundary condition in the transient conduction equation of the slab. After validating the predictions of the present models with experimental data, the variations in the heating characteristics of the slab are investigated with residence time in the furnace at two different charging and furnace gas temperatures. The optimum residence time for the slab in the furnace is examined with regard to slab exit temperature, temperature difference between the upper surface and centerline of the slab, and skid mark.  相似文献   

9.
A supersonic dual coaxial jet has been employed popularly for various industrial purposes, such as gasdynamic laser, supersonic ejector, noise control and enhancement of mixing. Detailed characteristics of supersonic dual coaxial jets issuing from an inner supersonic nozzle and outer sonic nozzles with various ejection angles are experimentally investigated. Three important parameters, such as pressure ratios of the inner and outer nozzles, and outer nozzle ejection angle, are chosen for a better understanding of jet structures in the present study. The results obtained from the present experimental study show that the Mach disk diameter becomes smaller, and the Mach disk moves toward the nozzle exit, and the length of the first shock cell decreases with the pressure ratio of the outer nozzle. It was also found that the highly underexpanded outer jet produces a new oblique shock wave, which makes jet structure much more complicated. On the other hand the outer jet ejection angle affects the structure of the inner jet structure less than the pressure ratio of the outer nozzle, relatively.  相似文献   

10.
针对同心圆环区域,设计了不同数目的组合电容层析成像传感器,以提高传感器在测量区域的空间分辨率。基于数值仿真,对内外径之比为0.2、0.3、0.4、0.5的4种同心圆环区域,采用了传统外层12电极和12-4、12-6、12-8 3种内外双层结构电极(IEE),研究了其成像特性。其中IEE传感器测量过程施行外部-对立-内部(EOI)和外部-对立(EO)两种激励策略,对几种典型的介质分布进行测量,并采用LBP、Tikhonov、Landweber算法开展图像重建。结合数值仿真和实验验证,结果显示内外双层电极测量随着同心圆环形区域内外径比增大,内层电极数目存在最优值,12-4型电极结构在不同环形区域的重建图像质量和稳定性更好。采用LBP算法进行成像时,EOI激励策略相比于EO激励策略在成像精度上略有优势;采用Tikhonov算法和Landweber迭代算法时,EO激励策略能有效避免异常电容值的影响,与IEE电极组合时能在不同内外径比的同心圆环区域测量中提高成像质量。  相似文献   

11.
A numerical model was developed to investigate dynamic instability in fossil fired once through boilers and the influence of the dynamics of tube and membrane structure furnace wall tubes on the stability boundary was examined. In order to predict density wave oscillation (DWO), the most common type of dynamic instability, a time domain nonlinear analysis approach was used to give a transient flow field in the tubes. The tubes were divided into one-dimensional finite volumes along their lengths and equations of conservation of mass, momentum and energy were discretized to give algebraic equations. The SIMPLE algorithm was adopted to solve these equations. Analysis of two-dimensional transient conduction across a tube-membrane section of each volume was performed concurrently and the resulting heat transfer between tube inner wall and fluid was included in the source term of the energy equation. After verification with results in available literature, the model was applied to a wall tube section of a 700 MW boiler furnace in subcritical once-through condition. The stability boundaries for three types of tube configuration were predicted, and it was found that the dynamics of tube configuration can have a significant effect on the flow instability in the boiler furnace wall tubes.  相似文献   

12.
For sufficiently high speeds of the inner cylinder, the flow between concentric rotating cylinders with a circumferential pressure gradient is unstable. By considering the full nonlinear equations, the amplitude of the resulting vortex motion is computed. The effect of the vortex motion on the shear stress at the inner cylinder and the relation between the mean flow and the pressure gradient are discussed.  相似文献   

13.
总结了两年多来中国石化炉管质量检测检验与评估中心对乙烯裂解炉管抽样检测的状况。对国产乙烯裂解炉141根离心铸造炉管、24根炉管焊接件以及27根静态铸造管件开展了化学成分、室温拉伸性能、高温持久性能试验和低倍组织酸蚀试验,给出了当前国产离心铸造炉管行业对杂质元素含量的控制情况、国产离心铸造炉管和静态铸造管件的室温拉伸性能与高温持久寿命状况,以及柱状晶与等轴晶比例。结果表明,当前国产乙烯裂解炉管合格率在80%~90%左右,炉管焊接件和静态铸造管件的高温持久寿命基本不合格,凸显出了国产乙烯裂解炉管行业存在的严峻问题。还就离心铸造炉管和管件杂质元素、新制造炉管性能与服役炉管失效模式的关系等问题开展了讨论。  相似文献   

14.
A new variable temperature STM has been developed which utilizes two concentric piezoelectric tubes; an inner scanning tube, and an outer thermal compensation tube which also provides for inertial translation of the sample into tunnelling range. With this design, continuously variable temperature operation is demonstrated for the first time in an STM. Also, by eliminating all mechanical components such as springs, levers and gears, which normally couple directly to the tunnelling gap in other designs, atomic resolution operation is demonstrated in which no vibration isolation is necessary. During operation, the inside of the scanning tube is maintained at ground potential while the feedback signal is electronically summed to the scanning voltages applied to the outer quadrants. In addition to shielding the sensitive tunnelling circuit, this mode of operation enables one to electronically balance out mechanical imperfections of the scanning tube. To date, this new STM has been operated over the 77–400 K temperature range with the observed thermal drift as low as 1 Å/h and 10 Å/K. Another useful feature of this new design is the ability to reposition a sample to within 200 Å of the same location after it has been translated macroscopic distances (several mm) out of tunnelling range.  相似文献   

15.
The Korea Atomic Energy Research Institute (KAERI) has been developing a dual-cooled annular fuel for a power uprate of 20% in an optimized pressurized water reactor (PWR) in Korea, OPR1000. The dual-cooled annular fuel is configured to allow coolant flow through the inner channel as well as the outer channel. Several thermal-hydraulic issues exist for the application of dual-cooled annular fuel to OPR1000. One is the hypothetical event of inner channel blockage because the inner channel is an isolated flow channel without the coolant mixing between the neighboring flow channels. The inner channel blockage could cause a departure from nucleate boiling (DNB) in the inner channel that eventually results in fuel failure. A long lower end plug for the annular fuel was invented to provide flow holes by perforating the side surface of the end plug body. The side holes in the lower end plug are expected to supply a minimum coolant in the inner channel to prevent the DNB occurrence in the event of partial or even complete blockage of the inner channel entrance. But due to the very unusual shape of the lower end plug, it is difficult to estimate the flow resistance of the side flow holes using empirical equations available in the open literature. An experiment and computational fluid dynamics (CFD) analysis were performed to investigate the bypass flow through the side holes of the end plug in the case of complete entrance blockage of the inner channel. The form loss coefficient in the side holes was also estimated using the pressure drop along the bypass flow path.  相似文献   

16.
微细通道内液氮流动沸腾的流型特性   总被引:1,自引:0,他引:1  
采用高速摄像,得到内径为1.931 mm、1.042 mm、0.531 mm的竖直上升圆管内液氮流动沸腾的主要流型为泡状流、弹状流、搅拌流和环状流;并且在1.042 mm、0.531 mm管内发现受限气泡流。并绘制流型图,分析表面张力,压力和管径对流型转变的影响。表面张力是影响流型转变的重要物性参数,相对于空气—水的流型图,对应的弹状流/搅拌流,搅拌流/环状流流型转变线向较低的气体表观速度方向移动;而泡状流/弹状流的转变线向较高的气体表观速度方向移动。压力越高,相应的流型转变曲线向较低的气体表观速度方向移动。管径对流型转变有重要影响,随着管径的减小,相应的流型转变线向较低的气体表观速度方向移动。试验结果与通用的流型转变理论模型作比较,发现理论模型的预测结果与试验结果相差较大。  相似文献   

17.
This paper is a continuation of the authors’ previous work on spiral coil heat exchangers. In the present study, the heat transfer characteristics and the performance of a spirally coiled finned tube heat exchanger under wet-surface conditions are theoretically and experimentally investigated. The test section is a spiral-coil heat exchanger which consists of a steel shell and a spirally coiled tube unit. The spiral-coil unit consists of six layers of concentric spirally coiled finned tubes. Each tube is fabricated by bending a 9.6 mm diameter straight copper tube into a spiral-coil of four turns. The innermost and outermost diameters of each spiral-coil are 145.0 and 350.4 mm, respectively. Aluminium crimped spiral fins with thickness of 0.6 mm and outer diameter of 28.4 mm are placed around the tube. The edge of fin at the inner diameter is corrugated. Air and water are used as working fluids in shell side and tube side, respectively. The experiments are done under dehumidifying conditions. A mathematical model based on the conservation of mass and energy is developed to simulate the flow and heat transfer characteristics of working fluids flowing through the heat exchanger. The results obtained from the present model show reasonable agreement with the experimental data.  相似文献   

18.
The results of the condensation heat transfer enhancement and pressure drop of HFC-134a by using the electrohydrodynamic (EHD) technique are presented. The test section is a horizontal tube-in-tube heat exchanger where the refrigerant flows in the inner tube and water flows in the annulus. The outer tube is a smooth copper tube havign outer diameter of 21.2 mm. Two types of inner tubes, smooth and micro-fin copper tubes, are tested. The outer diameter and length of both inner tubes is 9.52 mm and 2.5 m, respectively. A stainless steel cylindrical electrode of 1.47 mm in diameter is placed in the center of the tube. Experiments are conducted under conditions providing mass flux of 400 kg/m2s, saturated temperature of 40°C, heat flux of 20 kW/m2 and applied voltage of 2.5 kV. The experimental results indicate that the EHD enhancements of the smooth tube are higher than those of the micro-fin tube over the range of average quality. The maximum heat transfer enhancements for smooth and micro-fin tubes are 1.1. times and 1.08 times, respectively. For a smooth tube, the pressure drop induced by EHD is considerably small. However, the application of EHD in a micro-fin tube can lead to 10% increase in the pressure drop.  相似文献   

19.
脉冲爆震发动机具有众多优点,近来受到广泛的关注和研究。要成功起始爆震首先要解决燃油、空气的喷射与混合问题。本文利用CFD程序分别对切向、轴向和径向供气方式的混合室中油、气的混合流动特性进行了三维数值模拟,结果显示三种供气方式各有优劣。切向进气有助于油气的充分混合,但是油、气分布不均,不利于发动机的高频工作;轴向进气时油、气分布比较均匀,但是油气的混合不够充分,增加发动机爆燃向爆震转变的难度;而径向进气的油气分布、混合程度介于切向与轴向进气之间,能耗较大。  相似文献   

20.
Two-layered tubular joints are suitable for special applications. Designing and manufacturing of two layered components require enough knowledge about the tube material behavior during the hydroforming process. In this paper, hydroforming of two-layered tubes is investigated analytically, and the results are verified experimentally. The aim of this study is to derive an analytical model which can be used in the process design. Fundamental equations are written for both of the outer and inner tubes, and the total forming pressure is obtained from these equations. Hydroforming experiments are carried out on two different combinations of materials for inner and outer tubes; case 1: copper/aluminum and case 2: carbon steel/stainless steel. It is observed that experimental results are in good agreement with the theoretical model obtained for estimation of forming pressure able to avoid wrinkling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号