首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of grain boundary microstructure on fatigue crack propagation in austenitic stainless steel was investigated in order to control fatigue crack propagation. The fraction of low-Σ coincidence boundaries in specimens was controlled by thermomechanical processing. The specimen with the higher fraction of low-Σ boundaries (73%) showed the lower propagation rate of fatigue crack than the specimen with the lower fraction of low-Σ boundaries (53%). The ratio of intergranular fracture segments to the total crack length was lower for the specimen with the higher fraction of low-Σ boundaries. Moreover, the roles of grain boundaries in the fatigue crack propagation were investigated in connection with grain boundary microstructure, i.e., the character distribution and geometrical configuration of grain boundaries. It is evidenced that the approach to grain boundary engineering is applicable to controlling fatigue crack propagation in austenitic stainless steel.  相似文献   

2.
This paper presents an example of grain boundary engineering (GBE) for improving intergranular-corrosion and weld-decay resistance of austenitic stainless steel. Transmission and scanning electron microscope (TEM and SEM) observations demonstrated that coincidence site lattice (CSL) boundaries possess strong resistance to intergranular precipitation and corrosion in weld decay region of a type 304 austenitic stainless steel weldment. A thermomechanical treatment for GBE was tried for improvement of intergranular corrosion resistance of the 304 austenitic stainless steel. The grain boundary character distribution (GBCD) was examined by orientation imaging microscopy (OIM). The sensitivity to intergranular corrosion was reduced by the thermomechanical treatment and indicated a minimum at a small roll-reduction. The frequency of CSL boundaries indicated a maximum at the small roll-reduction. The corrosion rate was much smaller in the thermomechanical-treated specimen than in the base material for long time sensitization. The optimum thermomechanical treatment introduced a high frequency of CSL boundaries and the clear discontinuity of corrosive random boundary network in the material, and resulted in the high intergranular corrosion resistance arresting the propagation of intergranular corrosion from the surface. The optimized 304 stainless steel showed an excellent resistance to weld decay during arc welding.  相似文献   

3.
4.
Precipitation behavior of grain boundary carbides and its influence on mechanical properties and fracture mechanism of the high nitrogen austenitic stainless steel produced by different processing methods were studied. The simulation software Thermo-calc was applied to analyze the effects of element content on precipitation of carbides. The results show that hot-rolled plate has higher strength, but solution-treated one followed by water quenching has excellent combination of strength and ductility (toughness). M23C6 is the main precipitate and deteriorates the toughness of the steel obviously when it precipitates along grain boundaries. In this case, intergranular fracture is the predominant failure mechanism and the fracture surface is characterized by the shape of rock candy. The toughness at −40 °C is decreased by 53% when small amount of carbides precipitates during sand cooling process after solution treatment. The simulation results exhibit that with the decrease of C content, both the precipitation quantity and precipitation temperature of M23C6 decrease. Cr and N have no influence on precipitation quantity of M23C6, but the precipitation temperature will increase with the increase of Cr and the decrease of N.  相似文献   

5.
Measurement of the activation energy for the formation of serrated grain boundaries (GB) has been carried out to understand its underlying formation mechanism in an AISI 316 stainless steel. The apparent incubation time necessary to initiate grain boundary serration was obtained at different aging temperatures, and the apparent activation energy for serration was carefully calculated from the Arrhenius relationship between incubation time and aging temperature. The activation energy for GB serrations in this alloy was measured to be approximately 148 ± 20 kJ mole−1, which is consistent with the activation energy for lattice diffusion of carbon in γ-iron (142 kJ mole−1). This result indicates that GB serration could be controlled essentially by the lattice diffusion of carbon to grain boundaries. Based on the through-thickness observation of serrated GBs, a straight boundary began to serrate from the surface at an early stage of the aging treatment, and then the serrated parts propagated throughout the entire grain boundary.  相似文献   

6.
《材料科学技术学报》2019,35(10):2213-2219
The effect of grain size (in the range from 4 μm to 12 μm) on the hydrogen embrittlement (HE) of 304 austenitic stainless steel (ASS) was studied. HE susceptibility result shows that HE resistance increases with grain refinement. Electron backscattered diffraction kernel average misorientation (EBSD-KAM) mapping shows that the strain localization can be mitigated by grain refinement. Hence, strain localization sites which act as highways for hydrogen diffusion and preferred crack initiation sites can be reduced along with grain refinement, leading to a high HE resistance. Meanwhile, grain size shows no influence on the strain induced martensite (SIM) transformation during the hydrogen charging slow strain tensile test (SSRT). Hence, the SIM formed during hydrogen charging SSRT is not responsible for the different HE resistance of 304 ASSs with various grain sizes. Hydrogen diffusion is supposed to be controlled by a competition between short-circuit diffusion along random grain boundary (RGB) and hydrogen trapping at dislocations, leading to a maximum hydrogen diffusion coefficient in the 304 ASS with an average grain size of 8 μm.  相似文献   

7.
The present study aims to investigate the effect of grain refinement on strain hardening behaviour and fracture surface characteristics in 316LN austenitic stainless steel (ASS). The ASSs with varying grain sizes were obtained through 90% cold rolled reduction and subsequently phase reversion annealing treatment. The results showed that the grain refinement from coarse-grained (CG) structure to ultrafine-grained (UFG) structure increased the yield strength whilst maintaining a reasonable ductility. The strain hardening curves in all the samples were divided into three stages. The fractures in all the samples were ductile fracture with dimples. The subtle differences in the strain hardening behaviour and fracture surface characteristics among the samples with various grain sizes from CG structure to UFG structure were influenced by the deformation mechanisms of austenite.  相似文献   

8.
An experimental study addressing the effect of tensile deformation on recrystallized grain size has been undertaken to explore the conditions leading to abnormal grain growth in Type 316H austenitic stainless steel. Following a solution heat treatment, a Type 316H stainless steel has been subjected to various tensile deformations up to a maximum of approximately 50% strain and then heated at a temperature of 1150 °C for 0.5 h followed by furnace cooling. A fraction of abnormally large grains is observed following a prior strain of approximately 20%. The results are presented, in terms of standard statistical analysis, and also graphically. The graphical presentation provides a clear, visual appreciation of uni- and bi-modal distributions, which may be of general help in other analyses of this nature.  相似文献   

9.
Processing schedules for grain boundary engineering involving different types of cold deformation(tension, compression, and rolling) and annealing were designed and carried out for 18Mn18Cr0.6N high nitrogen austenitic stainless steel. The grain boundary characteristic distribution was obtained and characterized by electron backscatter diffraction(EBSD) analysis. The corrosion resistance of the specimens with different grain boundary characteristic distribution was examined by using potentiodynamic polarization test. The corrosion behavior of different types of boundaries after sensitization was also studied.The fraction of low-∑ boundaries decreased with increasing strain, and it was insensitive to the type of cold deformation when the engineering strain was lower than 20%. At the strain of 30%, the largest and smallest fractions of low-∑ boundaries were achieved in cold-tensioned and rolled specimens, respectively. The fraction of low-∑ boundaries increased exponentially with the increase of grain size. The proportion of low-∑ angle grain boundaries increased with decreasing grain size. Increasing the fraction of low-∑ boundaries could improve the pitting corrosion resistance for the steels with the same grain size.After sensitization, the relative corrosion resistances of low-∑ angle grain boundaries, ∑3 boundaries, and ∑9 boundaries were 100%, 95%, and 25%, respectively, while ∑27 boundaries, other low-∑ boundaries and random high-angle grain boundaries had no resistance to corrosion.  相似文献   

10.
This work investigates the influence of solution temperature on grain growth and degree of sensitization of AISI 321 steel. Samples were solution treated at temperatures between 800 and 1,200°C for 80 min and sensitized at 600°C for 105 h. Optical microscopy and double loop electrochemical potentiodynamic reactivation (DLEPR) techniques were used to characterize and evaluate the degree of sensitization. The grain coarsening temperature (Tgc) found was 1,080°C, with occurrence of abnormal or discontinuous grain growth. Samples submitted to solution heat treatment below 1,080°C presented average grain diameter approximately equal to those presented by non-heat treated samples. The sensitization process at 600°C for 105 h became null when the samples were previously solution treated at 800 or 900°C, for 80 min. Sensitized and previously solution treated samples for temperatures greater than 1,075°C presented a decrease in sensitization intensity and an increase in transgranular precipitation.  相似文献   

11.
12.
Grain boundary engineering (GBE) primarily aims to prevent the initiation and propagation of intergranular degradation along grain boundaries by frequent introduction of coincidence site lattice (CSL) boundaries into the grain boundary networks in materials. It has been reported that GBE is effective to prevent intergranular corrosion due to sensitization in unstabilized 304 and 316 austenitic stainless steels, but the effect of GBE on intergranular corrosion in stabilized austenitic stainless steels has not been clarified. In this study, a twin-induced GBE utilizing optimized thermomechanical processing with small pre-strain and subsequent annealing was applied to introduce very high frequencies of CSL boundaries into a titanium-stabilized 321 austenitic stainless steel. The resulting steel showed much higher resistance to intergranular corrosion after sensitization subsequent to carbon re-dissolution heat treatment during the ferric sulfate–sulfuric acid test than the as-received one. The high CSL frequency resulted in a very low percolation probability of random boundary networks in the over-threshold region and remarkable suppression of intergranular corrosion during GBE.  相似文献   

13.
14.
It is well-known that crack initiation in fatigued austenitic steel (316L) specimens is dominated at lower deformation amplitudes by twin boundaries (TBs). For medium plastic strain amplitudes, it is shown here that the propagation of short cracks starting at TBs can be explained when both the surface tractions caused by elastic anisotropy as well as the related slip processes are considered. This conclusion has been obtained from grain orientation measurements along damaged TBs using the electron backscatter diffraction technique in the scanning electron microscope. The frequency of the damaged TBs strongly depends on the meso-texture given by the distribution of 60° 〈111〉 rotation axes of the twins in the pole figure. The texture was determined by automatic orientation mapping. Specimens, which were machined transverse to the rolling direction of the plate, show more damaged TBs than those machined parallel. Consequently, the risk of TB cracks can be reduced by favorable alignment of the specimens with respect to the rolling direction.  相似文献   

15.
The effect of the grain size (varying in the range of 2.5–50 m) on the mechanical properties and on the wear and corrosion resistance of a low nickel austenitic stainless steel is reviewed. In particular, the austenite-martensite transformation followed by annealing for martensite reversion in high nitrogen stainless steel is investigated. In order to study the effect of this thermo-mechanical process on grain refinement, the effect of cold reduction, annealing temperature and annealing times were analysed. After obtaining ultrafine grains, the effect of the grain size on the hardness and the tensile properties was evaluated and showed a Petch-Hall dependency in the fully analysed range (down to a 2.5 m grain size).The fatigue behaviour of the steel is studied as a function of the grain size showing a poor influence of grain refining on the fatigue resistance. An increase of both the wear resistance and of the localized corrosion resistance with grain refining is also detected. Results are compared to those of similar measurements on a standard AISI 304 steel.  相似文献   

16.
This paper shows, in a quantitative manner, how the precipitation of niobium carbide in an austenitic stainless steel is affected by varying the amount of deformation prior to ageing. In particular, the extrinsic dislocation content of grain boundaries is shown to govern the overall size distribution of grain-boundary precipitates developed during ageing.  相似文献   

17.
Abstract

The effect of tempering on nitrided austenitic stainless steel AISI 316 has been studied. Nitrided specimens (with 0.4 wt-%N) were tempered for short times at temperatures up to 900°C and the results show a small effect on the microstructures and mechanical properties. The strength is consistent with a Hall–Petch relationship dependent on nitrogen content in solution. The effect of tempering has also been studied on cold and hot deformed nitrided specimens. In these cases, tempering had a range of different effects on the microstructures and mechanical properties. Specimens that are tempered before cold rolling showed a continuous decrease in strength as the tempering temperature increased, while specimens cold rolled and then tempered had a maximum strength at 550°C. Specimens with 0.4 wt-%N subjected to tempering followed by hot deformation also showed a maximum strength at similar tempering temperatures. The nature of these changes has been analysed and mechanisms have been proposed that relate microstructural effects and properties.  相似文献   

18.
The effect of thermal annealing on shot-peened Type 304 stainless steel has been examined using electron backscatter diffraction (EBSD) and X-ray diffraction (XRD). The objective was to evaluate the potential for surface property control by grain boundary engineering. The near surface microstructure of shot-peened material showed a gradual change of the grain boundary character distribution with depth. Twin (Σ3) and higher order twin grain boundaries (Σ9, Σ27) identified closer to the shot-peened surface had significant deviations from their optimum misorientation. The subsequent application of annealing treatments caused depth-dependent changes of the near surface microstructure, with variations in grain size, low Σ CSL grain boundary populations and their deviation from optimum misorientation. Microstructure developments were dependent on the applied heat treatment, with the near surface microstructures showing similarities to microstructures obtained through bulk thermo-mechanical processing. Shot peening, followed by annealing, may therefore be used to control the near surface microstructure of components.  相似文献   

19.
Samples of an AISI type 316L stainless steel were subjected to different treatments to promote changes in their microstructure. The specimens were heated in a box furnace set at four different temperatures for 30 min and cooled in air to room temperature by placing them in water after the cycle was completed. The samples were prepared following standard metallographic procedures, the microstructure was revealed with an electrolytic etchant, and the average grain size in each sample was determined by the mean line intercept technique. Images from the microstructures were digitized and fed into a personal computer for their fractal analysis by box counting. Two different approaches were used to obtain the fractal dimension of the structure, yielding to similar values in both cases. It was found that the fractal dimension of the microstructure increased with the reduction in grain size.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号