首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This article proposes criteria and mechanisms that achieve seamless inter-working between the multi-radio access technologies that will compose the fourth-generation (4G) wireless mobile environment. We address the problem of incorporating system interoperability in order to provide the user with seamless mobility across different radio access technologies; namely we focus on inter-working UMTS-High Speed Downlink Packet Access (HSDPA) and WLAN networks, as these two networks are believed to be major components of the 4G wireless network. Interoperability results in providing the user with a rich range of services across a wide range of propagation environment and mobility conditions, using a single terminal. Specifically, the article aims at defining the criteria and mechanisms for interoperability between the two networks. Our approach considers the use of Cost functions to monitor the essential parameters at the system level in order to trigger an interoperability procedure. Initial user assignment and inter-system handover are considered the incidents that initiate the interoperability algorithm execution. The overall objective of this work is to assess the performance of our developed interoperability platform and to optimize system performance by guarantying a minimum QoS requirement and maximizing network capacity.  相似文献   

2.
TCP performance enhancement in wireless access networks is an important ongoing area of research. It is known that the hostile nature of the wireless channel and the mobile nature of wireless users interact adversely with standard TCP congestion control mechanisms [1], causing a drastic reduction in throughput. This article surveys a selection of different approaches to managing TCP performance over wireless links, and presents the results of simulation and field trial results of a novel TCP performance enhancing proxy over diverse cellular radio access technologies based on the GSM, cdma2000, and UMTS standards. The proposed TRL TCP performance enhancing proxy has the advantages of being completely transparent to both TCP endpoints and tunable to different access technologies, and frequently achieves the maximum throughput available from any of the studied radio access technologies.  相似文献   

3.
Due to development of different technologies there has been significant improvement in quality of life. As a result of that, average person’s lifetime duration has been increased. That triggers the problem of independent living of senior citizens. One of the main concerns of the world today is how to enable senior citizens to live independently. As a response to that, systems like eWALL are being developed. eWALL for Active Long Living is a FP7 funded project and it aims to develop system which will enable elderly people to live independently. These systems consist of a large number of sensors which make wireless sensor network. In this paper, different wireless technologies that can be used for communication in systems that are designed to support independent living of elderly people, have been described. The most important focus is at wireless personal area network technologies, like ZigBee, Bluetooth, Bluetooth Low Energy and wireless local area network technologies (e.g., Wi-Fi). There are many obstacles in designing wireless sensor network and most of them concern energy efficiency and interoperability of different technologies that are being used for communication. The main challenge in the current technology world is tremendous increase of use of various wireless devices and technologies, which can cause relatively high interference, so that the wireless devices can stop working. Using cognitive radio in solving the interoperability problem of different wireless technologies in wireless sensor networks has become interesting research topic. In this paper, research on interoperability of different wireless technologies is presented. Using Spectrum Engineering Advanced Monte Carlo Analysis Tool wireless sensors network in home environment was modelled. Interference based on devices layout and activity was investigated. Also, possible improvements that can be made with cognitive radio are investigated and obtained results are given in this paper.  相似文献   

4.
In this paper we present a new scheme combining artificial noise beam forming and secrecy coding to strengthen the security of existing wireless communication systems. Artificial noise and beam forming guarantee a radio advantage to legitimate users, enabling the use of our secrecy coding scheme to provide reliability and secrecy. This overall security protocol is compliant with existing widespread radio access technologies and it can be considered as a key-free add-on to improve security of the physical layer of wireless networks.  相似文献   

5.
In recent years, wireless communication technology has undergone a tremendous change. Various radio access technologies have been deployed all over the world. The 4G mobile system was proposed to integrate all of these radio access technologies into a common network called the open wireless architecture (OWA) platform. As one of the main features of a 4G mobile system, always best connected (ABC) services enable users to choose the best available access networks in a way that best suits their needs. A new architecture capable of supporting ABC service is proposed in this study. There are three parts to the proposed architecture. First, a novel access discovery mechanism that integrates service location protocol and location-based service is presented. Second, a new personalized network selection scheme is put forward. Users can select their personalized "best" network by changing weight factors and constraints in a single objective optimization problem. Third, a seamless handover mechanism based on Mobile IPv6 is proposed. The mechanism supports end-to-end quality of service. Through analysis, this architecture demonstrates that it has benefits not only for network operators, but also for users  相似文献   

6.
Extensive use of the Internet and huge demands for multimedia services via portable devices require the development of packet-based radio access systems with high transmission efficiency. Advanced radio transmission technologies have recently been proposed to achieve this challenging task. However, few researches have been reported on the design of an integrated system that can efficiently exploit the advantages of these transmission technologies. This paper considers the design of a packet-based cellular system for next-generation radio access. We propose a novel system framework that can incorporate various advanced transmission technologies such as link adaptation, opportunistic packet scheduling, channel coding, and multiantenna techniques. For efficient use of these technologies together, we first investigate the interoperability between these technologies by proposing a so-called cause and effect analysis. Based on this investigation, we design a differentiated-segments-based orthogonal frequency-division multiplexing system, called DiffSeg, to accommodate heterogeneous operating conditions in a seamless manner. Simulation results show that the proposed DiffSeg system can provide a nearly optimum performance with flexible configuration in a wide range of wireless channel conditions.  相似文献   

7.
随着无线通信技术的不断发展,多接入技术、不同运营商和多样化终端共存的局面使得传统的无线通信格局面临困境,异构网络融合成为未来网络发展的必然趋势。欧盟项目Ambient Networks对异构网络融合进行了深入的研究。Ambient Networks提出了Ambient控制平面(ACS)来支持动态的、分布式的、自管理和自维护的异构网络管理;通过多无线接入结构(MRA)充分利用多种接入技术并存带来的优势,为用户提供总是处于最佳连接的服务。  相似文献   

8.
Advances in network architecture, enhancements in signaling protocols, provisioning of end-to-end QoS, worldwide seamless mobility, and flexible service provision are among the major research challenges toward next-generation wireless networks. The integration and interoperability of all these technologies, along with new truly broadband wireless innovations and intelligent user-oriented services will lead toward the so-called 4G wireless networks. In this article we identify the key issues of an innovative transparent IP radio access system that targets 4G networks.  相似文献   

9.
The popularity of wireless communication systems can be seen almost everywhere in the form of cellular networks, WLANs, and WPANs. In addition, small portable devices have been increasingly equipped with multiple communication interfaces building a heterogeneous environment in terms of access technologies. The desired ubiquitous computing environment of the future has to exploit this multitude of connectivity alternatives resulting from diverse wireless communication systems and different access technologies to provide useful services with guaranteed quality to users. Many new applications require a ubiquitous computing environment capable of accessing information from different portable devices at any time and everywhere. This has motivated researchers to integrate various wireless platforms such as cellular networks, WLANs, and MANETs. Integration of different technologies with different capabilities and functionalities is an extremely complex task and involves issues at all layers of the protocol stack. This article envisions an architecture for state-of-the-art heterogeneous multihop networks, and identifies research issues that need to be addressed for successful integration of heterogeneous technologies for the next generation of wireless and mobile networks.  相似文献   

10.
Many wireless access systems have been developed recently to support users mobility and ubiquitous communication. Nevertheless, these systems always work independently and cannot simultaneously serve users properly. In this paper, we aim to integrate IPv6-based wireless access systems and propose a coordinated call admission control mechanism to utilize the total bandwidth of these systems to minimize the call blocking probabilities, especially the handoff call dropping probabilities. First, we propose an integrated hierarchical wireless architecture over IPv6-based networks to combine the wireless access systems including cellular systems (second-generation, General Packet Radio Service, or third-generation), IEEE 802.11 a/b/g WLAN, and Bluetooth. In the proposed architecture, mobile user can request a call with quality-of-service (QoS) requirements by any wireless network interfaces that can be accessed. When the proposed coordinated call admission control (CCAC) mechanism receives a request, it takes the QoS requirements of the incoming call and the available and reserved bandwidth of this wireless system into consideration to accept or reject this request. Besides, the mechanism can coordinate with other wireless systems dynamically to adjust the bandwidth reserved for handoff calls at each wireless system in this architecture so as to reduce the call blocking probabilities. Once the call is admitted, the mobile user is able to access heterogeneous wireless access networks via multiple interfaces simultaneously. Finally, we evaluate this system to show that the CCAC on the proposed architecture outperforms other mechanisms proposed before.  相似文献   

11.
The next generation of communication systems will provide consumers with a host of new and improved voice, video, and data services. Rapidly developing wireless radio systems are already contributing to the progress, giving consumers the luxury of tetherless access to telephone conversation, on-line computing, and cable-television. Indeed, wireless access to high quality information and entertainment is quickly becoming a key component of the information superhighway. In that context, optical fiber links, which have the bandwidth for providing users with the service of their choice, are an excellent connecting infrastructure for providing uniform radio coverage in wireless networks. Indeed, fast improving analog FO links will serve such networks well. In this article, we will analyze the requirements for such a system  相似文献   

12.
Readiness in deployment and flexibility in radio resource configuration are the main features of future wireless communication systems. A cooperative wireless communication system (CWCS) is proposed to follow the same principle, aiming at improving the overall performance of a wireless system with the support of advanced beam-hopping techniques. In this article, we propose a multiloop radio resource management mechanism for the CWCS based on the organized beam-hopping (OBH) technique. The proposed RRM mechanism enhances the robustness of the CWCS, based on the OBH technique working with fast temporal-spatial variant traffic. The results show that the system performance can be further improved by hybrid transmission and event- driven access management techniques.  相似文献   

13.
The future-generation wireless systems will combine heterogeneous wireless access technologies to provide mobile users with seamless access to a diverse set of applications and services. The heterogeneity in this inter-technology roaming paradigm magnifies the mobility impact on system performance and user perceived service quality, necessitating novel mobility modeling and analysis approaches for performance evaluation. In this paper, we present and compare three mobility models in two-tier integrated heterogeneous wireless systems, the independence model as a naive extension of the traditional cell residence time modeling techniques for homogeneous cellular networks, the basic Coxian model which takes into consideration the correlation between the residence time within different access technologies, and the extended-Coxian model for further improved estimation accuracy. We propose a general stochastic performance analysis framework based on application session models derived from these mobility models, applying it to a 3G-WLAN integrated system as an example. Our numerical and simulation results demonstrate the general superiority of Coxian-based mobility modeling over the independence model. Furthermore, using the proposed modeling and analysis methods, we investigate the impact of different parameters on system performance metrics such as network utilization time, handoff rates, and forced termination probability, for a wide range of user applications.  相似文献   

14.
Current cellular networks based on Third Generation Partnership Project (3GPP) and 3GPP2 technologies provide evolution from circuit-switched technologies, originally developed for voice communications, to packetswitched technologies. Next-generation networks need to deliver IP-based services (voice, video, multimedia, data, etc.) for all kinds of user terminals while moving between fixed (fiber, DSL, cable) and wireless (3GPP-based, 3GPP2-based, IEEE-based) access technologies, and roaming between various operator networks. Users expect the network to originate, terminate, and maintain a session while the user is moving and roaming. Services have to be delivered to users based on serving network functionality (quality of service [QoS], bandwidth, etc.), availability, and user preferences. The network and users must be protected through various authentication, encryption, and other security mechanisms at the access, network, and application layers. Mobility has to be provided through coordinated link, network, and application layer mobility mechanisms that ensure user expectations of service performance are met. Requirements on the radio technology include improved performance as well as reduced system and device complexity. 3GPP Release 8 specifies the architecture to meet the above requirements.  相似文献   

15.
Samik  Kalyan  Sajal K.   《Ad hoc Networks》2007,5(6):652-679
The phenomenal growth in wireless technologies has brought about a slew of new services. Incumbent with the new technology is the challenge of providing flexible, reconfigurable, self-organizing architectures which are capable of catering to the dynamics of the network, while providing cost-effective solutions for the service providers. In this paper, we focus on mesh-based multi-hop access network architectures for next generation radio access networks. Using short, high bandwidth optical wireless links to interconnect the various network elements, we propose a non-hierarchical, multi-hop access network framework. We study two generic family of mesh-based topologies: GPeterNet, a graph theoretic framework, and FraNtiC, a fractal geometric architecture, for arbitrary access network deployments. The performance of these topologies is analyzed in terms of different system metrics – topological robustness and reliability, system costs and network exposure due to failure conditions. Our analysis shows that a combination of different mesh-based multi-hop access topologies, coupled with emerging wireless backhaul technologies, can cater carrier-class services for next generation radio access networks, providing significant advantages over existing access technologies.  相似文献   

16.
Cooperative cognitive radio networks are new cognitive radio paradigm. Cooperative communication approaches, such as cooperative spectrum sensing and cooperative spectrum sharing, are playing key roles in the development of cognitive radio networks. To achieve the high performance, a cooperative cognitive communication framework is often used to model various cooperative spectrum sensing or sharing scenarios. However, its implementation faces numerous challenges due to the complexity of mobility and traffic models, the needs of dynamic spectrum access, the heterogeneous requirements from different users, and the distributed structure of the network. Fortunately, cooperative game theory can be used to formulate and model the interactions among licensed and unlicensed users for spectrum sensing and spectrum sharing to efficiently allocate spectrum resource in the highly dynamic and distributed radio environment. In this paper, we first present the cooperative communication technologies and describe their existing challenges, then introduce different game solutions, after that, we discuss several cooperative game strategies, and analyze the associated their applications in cognitive radio networks, at final, some open directions for future research on economic strategies in cooperative communication in cognitive radio networks are proposed.  相似文献   

17.
WiMAX, worldwide interoperability for microwave access, is an emerging wireless communication system that can provide broadband access with large-scale coverage. As a cost-effective solution, multihop communication is becoming more and more important to WiMAX systems. To successfully deploy multihop WiMAX networks, security is one of the major challenges that must be addressed. Another crucial issue is how to support different services and applications in WiMAX networks. Since WiMAX is a relatively new standard, very little work has been presented in the literature. In this article we propose a secure and service-oriented network control framework for WiMAX networks. In the design of this framework we consider both the security requirements of the communications and the requirements of potential WiMAX applications that have not been fully addressed previously in the network layer design. The proposed framework consists of two basic components: a service-aware control framework and a unified routing scheme. Besides the design of the framework, we further study a number of key enabling technologies that are important to a practical WiMAX network. Our study can provide a guideline for the design of a more secure and practical WiMAX network  相似文献   

18.
With the rapid development of wireless technologies, wireless access networks have entered their Fifth-Generation (5G) system phase. The heterogeneous and complex nature of a 5G system, with its numerous technological scenarios, poses significant challenges to wireless resource management, making radio resource optimization an important aspect of Device-to-Device (D2D) communication in such systems. Cellular D2D communication can improve spectrum efficiency, increase system capacity, and reduce base station communication burdens by sharing authorized cell resources; however, can also cause serious interference. Therefore, research focusing on reducing this interference by optimizing the configuration of shared cellular resources has also grown in importance. This paper proposes a novel algorithm to address the problems of co-channel interference and energy efficiency optimization in a long-term evolution network. The proposed algorithm uses the fuzzy clustering method, which employs minimum outage probability to divide D2D users into several groups in order to improve system throughput and reduce interference between users. An efficient power control algorithm based on game theory is also proposed to optimize user transmission power within each group and thereby improve user energy efficiency. Simulation results show that these proposed algorithms can effectively improve system throughput, reduce co-channel interference, and enhance energy efficiency.  相似文献   

19.
新一代宽带无线通信网络迫切需要引入认知无线电技术以提升系统性能。针对动态频谱接入(DSA)的无线网络环境,首先探讨了其路由技术研究所面临的新挑战,然后以体现动态频谱管理特征的独特分类方式,分析了其路由技术研究的最新进展,最后展望了路由技术研究的未来发展方向。  相似文献   

20.
ABSTRACT

The collaboration of users in communication systems is defined as cooperative communication. The cognitive radio, i.e. dynamic spectrum access technique, is a wireless communication technology that provides a great chance for unlicensed users to exploit the frequency bands in an opportunistic way. A wireless sensor network is a widely used communication technology composing of spatially distributed independent sensors in order to monitor physical or environmental circumstances. In this work, a new technique that unlicensed users become a cooperative relay when they are in idle mode is proposed. Along with the proposed technique, unlicensed users help sensor nodes as a cooperative relay when they are in idle mode. Similarly, sensor nodes help unlicensed users for detecting idle frequency bands while in sleep mode. By preventing any disruption that remote users may be exposed owing to signal attenuation, the proposed cooperative relay utilises amplify and forward based cooperative communication protocol. Thanks to this approach; the overall network has greater performance than wireless sensor network that does not use cooperative communication based dynamic access technique in terms of throughput, energy, and delay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号