首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermal diffusivity of simulated fuels with dissolved fission products was measured by using the laser-flash method in the temperature range from room temperature to 1,473 K. Three kinds of simulated fuels with an equivalent burn-up of 3, 6, and 12 at% were used in the measurement. The thermal diffusivity and the thermal conductivity of the simulated fuels with the dissolved fission products decreased, as the temperature and the equivalent burn-up increased. The thermal conductivities of simulated fuels with equivalent burn-ups of 3, 6, and 12 at% were lower than that of UO2 by 84.70, 67.17, and 44.97% at 300 K and 99.17, 89.88, and 80.56% of UO2 at 1,473 K, respectively. The difference in the thermal conductivity between the simulated fuel and UO2 was large at room temperature, and it decreased as the temperature increased. The thermal resistivity of the simulated fuels increased linearly with temperature up to 1,473 K.  相似文献   

2.
Thermal expansions of UO2 and a simulated fuel with fission products forming a solid solution were studied using a dilatometer in the temperature range from 298 to 1800 K. The densities of the UO2 and the simulated fuel used in the measurements were 10.43 g · cm−3 (95.2% of theoretical density (TD)) and 10.35 g · cm−3 (95.6% of TD), respectively. The linear thermal expansion of the simulated fuel is higher than that of UO2, and the difference between this fuel and UO2 increases monotonically with temperature. The average linear thermal expansion coefficients of UO2 and the simulated fuel are 1.09× 10−5 and 1.23×10−5 K−1, respectively. As the temperature increases to 1800 K, the relative densities of UO2 and the simulated fuel decrease to 95.1 and 94.7% of their initial densities at 298 K.Paper presented at the Seventh Asian Thermophysical Properties Conference, August 23–28, 2004, Hefei and Huangshan, Anhui, P. R. China.  相似文献   

3.
Thermal expansions of simulated spent PWR fuel and simulated DUPIC fuel were studied using a dilatometer in the temperature range from 298 to 1900 K. The densities of simulated spent PWR fuel and simulated DUPIC fuel used in the measurement were 10.28 gcm–3 (95.4% of TD) and 10.26 gcm–3 (95.1% of TD), respectively. The linear thermal expansions of the simulated fuels are higher than that of UO2, and the difference between these fuels and UO2 increases progressively with temperature. However, the difference between simulated spent PWR fuel and simulated DUPIC fuel is extremely small, less than the experimental error. For the temperature range from 298 to 1900 K, simulated spent PWR fuel and simulated DUPIC fuel have the same average linear thermal expansion coefficient of 1.39×10–5K–1. As the temperature increases to 1900 K, the relative densities of simulated spent PWR fuel and simulated DUPIC fuel decrease to 93.8% of initial densities at 298 K.  相似文献   

4.
This paper reports measurements of the effective thermal conductivity and thermal diffusivity of various nanofluids using the transient short-hot-wire technique. To remove the influences of the static charge and electrical conductance of the nanoparticles on measurement accuracy, the short-hot-wire probes are carefully coated with a pure Al2O3 thin film. Using distilled water and toluene as standard liquids of known thermal conductivity and thermal diffusivity, the length and radius of the hot wire and the thickness of the Al2O3 film are calibrated before and after application of the coating. The electrical leakage of the short-hot-wire probes is frequently checked, and only those probes that are coated well are used for measurements. In the present study, the effective thermal conductivities and thermal diffusivities of Al2O3/water, ZrO2/water, TiO2/water, and CuO/water nanofluids are measured and the effects of the volume fractions and thermal conductivities of nanoparticles and temperature are clarified. The average diameters of Al2O3, ZrO2, TiO2, and CuO particles are 20, 20, 40, and 33 nm, respectively. The uncertainty of the present measurements is estimated to be within 1% for the thermal conductivity and 5% for the thermal diffusivity. The measured results demonstrate that the effective thermal conductivities of the nanofluids show no anomalous enhancement and can be predicted accurately by the model equation of Hamilton and Crosser, when the spherical nanoparticles are dispersed into fluids.  相似文献   

5.
The molybdenum content of fuel core whose matrix is aluminium 1060, was varied to be 7, 8, and 10 wt% and the volume fraction of U-Mo fuel powders was varied to be 10, 30, and 40 vol%. In this work, thermal conductivities were calculated from measured thermal diffusivities, specific heat capacities, and densities, which were determined using the laser flash, DSC, and Archimedes methods, respectively. The thermophysical properties were measured over a temperature range from room temperature to 500°C. The U-Mo alloy was annealed at between 525 and 550°C for 1 to 36 hours. At high temperature, the U-Mo particles were reacted with aluminium matrix as forming layers of (U-Mo)Al x . These reaction layers have been affected adversely by the thermal conductivity of fuel core. The thermal conductivities of annealed samples appeared to decrease with increasing volume fraction of the reaction layers.  相似文献   

6.
We have developed an analytical model to determine the thermal diffusivity of nonscattering materials from samples with low optical thickness and opaque boundaries with arbitrary emissivities. The paper outlines the new analytical model and describes measurements on two samples: a microscope slide glass and a high-grade fused quartz plate. Results show that the new model applied to measurements on gold- or graphite-coated samples leads to the same results as if a conventional model is used on gold-coated samples.  相似文献   

7.
In this paper, the thermal conductivity and thermal diffusivity of four kinds of polymer melts were measured by using the transient short-hot-wire method. This method was developed from the hot-wire technique and is based on two-dimensional numerical solutions of unsteady heat conduction from a wire with the same length-to-diameter ratio and boundary conditions as those in the actual experiments. The present method is particularly suitable for measurements of molten polymers where natural convection effects can be ignored due to their high viscosities. The results have shown that the present method can be used to measure the thermal conductivity and thermal diffusivity of molten polymers within uncertainties of 3 and 6%, respectively. Further, the thermal conductivity and thermal diffusivity of solidified samples were also measured and discussed.  相似文献   

8.
Thermal conductivity is a very basic property that determines how fast a material conducts heat, which plays an important and sometimes a dominant role in many fields. However, because materials with phase transitions have been widely used recently, understanding and measuring temperature‐dependent thermal conductivity during phase transitions are important and sometimes even questionable. Here, the thermal transport equation is corrected by including heat absorption due to phase transitions to reveal how a phase transition affects the measured thermal conductivity. In addition to the enhanced heat capacity that is well known, it is found that thermal diffusivity can be abnormally lowered from the true value, which is also dependent on the speed of phase transitions. The extraction of the true thermal conductivity requires removing the contributions from both altered heat capacity and thermal diffusivity during phase transitions, which is well demonstrated in four selected kinds of phase transition materials (Cu2Se, Cu2S, Ag2S, and Ag2Se) in experiment. This study also explains the lowered abnormal thermal diffusivity during phase transitions in other materials and thus provides a novel strategy to engineer thermal conductivity for various applications.  相似文献   

9.
The local thermal diffusivity is of special interest for quality control of materials grown by physical vapor transport. A typical specimen of these materials consists of single crystals with sizes up to 1 mm. The conventional laser-flash method delivers only an average value of the thermal diffusivity of these polycrystalline materials. A local sensitive measurement system is desirable to determine the thermal diffusivity of single grains with diameters of 100 μm and above. In this work a modification of a standard laser-flash apparatus is presented. The key feature is the position control of the specimen in the plane perpendicular to the laser beam and the IR-detection unit. The mechanical precision of the position control is better than 100 μm. The IR-detection unit consists of a MCT-detector, a polycrystalline IR-fiber, and a system to focus on the sample surface. To study the experimental potential of the modified laser-flash method, measurements of the local thermal diffusivity of a multiphase specimen with known microscopic thermal properties are presented. The obtained results are discussed with respect to the energy profile of the laser beam and the alignment of the IR-detection unit. It is shown that the thermal diffusivity of a small specimen area with a diameter of 2 mm can be determined with an uncertainty of ±5 %. For a polycrystalline aluminum nitride (AlN) specimen with grain sizes of the order of 1 mm, a mean value for the thermal diffusivity of (72.1 ± 3.6) m2 · s−1 at room temperature is determined. A possible local variation of the thermal diffusivity cannot yet be observed. An improvement of the resolution is in progress. Paper presented at the Seventeenth European Conference on Thermopysical Properties, September 5–8, 2005, Bratislava, Slovak Republic.  相似文献   

10.
一维高导热C/C复合材料的制备研究   总被引:1,自引:0,他引:1  
以三种沥青作为基体前驱体, 实验室自制的AR中间相沥青基纤维为增强体, 通过500℃热压成型, 随后经炭化和石墨化处理制备出一维炭/炭(C/C)复合材料。研究了前驱体沥青种类和热处理温度对复合材料导热性能的影响, 并采用扫描电子显微镜和偏光显微镜对其石墨化样品的形貌和微观结构进行表征。结果表明; C/C复合材料在沿纤维轴向的室温热扩散系数和导热率均随热处理温度的升高而逐渐增大; 由AR沥青作为基体前驱体所制备的C/C复合材料具有更加明显的沿纤维轴向取向的石墨层状结构以及最好的导热性能, 其3000℃石墨化样品沿纤维轴向的室温热扩散系数和导热率分别达到594.5 mm2/s和734.4 W/(m·K)。  相似文献   

11.
A transient short-hot-wire technique has been successfully used to measure the thermal conductivity and thermal diffusivity of molten salts (NaNO3, Li2CO3/K2CO3, and Li2CO3/Na2CO3) which are highly corrosive. This method was developed from the hot-wire technique and is based on two-dimensional numerical solutions of unsteady heat conduction from a short wire with the same length-to-diameter ratio and boundary conditions as those used in the actual experiments. In the present study, the wires are coated with a pure Al2O3 thin film by using a sputtering apparatus. The length and radius of the hot wire and the resistance ratio of the lead terminals and the entire probe are calibrated using water and toluene with known thermophysical properties. Using such a calibrated probe, the thermal conductivity and thermal diffusivity of molten nitrate are measured within errors of 3 and 20%, respectively. Also, the thermal conductivity of the molten carbonates can be measured within an error of 5%, although the thermal diffusivity can be measured within an error of 50%.  相似文献   

12.
Several recent advances made in the author's laboratory in the experimental apparatus and measuring procedures for precise measurements of thermophysical properties by the laser-flash method are reviewed. Heat-capacity measurement has been done on metals and ceramics within an accuracy of ±0.5% in the range from 80 to 800 K, and within ±2% from 800 to 1100 K. Thermal diffusivity has been also measured from 80 to 1300 K with reasonable corrections for heat leak and finite pulse width. As an example of the experimental results by the method, the data of heat capacity, thermal diffusivity, and thermal conductivity of vanadium-oxygen alloys containing 1.07 and 3.46 at.% of oxygen from 80 to 800 K are presented and compared with those of pure vanadium metal.Presented at the Japan-United States Joint Seminar on Thermophysical Properties, October 24–26, 1983, Tokyo, Japan.  相似文献   

13.
热线法快速测量微粒导热系数的研究   总被引:5,自引:0,他引:5  
简述了热线法快速测量固体微粒导热系数的原理,设计制作了实验系统.用实验装置测量了沙子和氧化铝粉末的导热系数.针对测量数据进行综合处理,测试结果与有关文献提供的数据基本相符,实验证实使用该方法和装置测定固体颗粒的导热系数可行.最后提出装置的发展与改进.  相似文献   

14.
As a part of the DUPIC (direct use of spent PWR fuel in CANDU reactors) fuel development program, the thermal expansion of simulated spent fuel pellets with dissolved fission products has been studied by using a thermo-mechanical analyzer (TMA) in the temperature range from 298 K to 1773 K to investigate the effects of fission products forming solid solutions in a UO2 matrix on the thermal expansions. Simulated fuels with an equivalent burn-up of (30 to 120) GWd/tU were used in this study. The linear thermal expansions of the simulated fuel pellets were higher than that of UO2, and the difference between these fuel pellets and UO2 increased monotonically with temperature. For the temperature range from 298 K to 1773 K, the values of the average linear thermal expansion coefficients for UO2 and simulated fuels with an equivalent burn-up of (30, 60, and 120) GWd/tU are 1.19 × 10−5 K−1, 1.22 × 10−5 K−1, 1.26 × 10−5 K−1, and 1.32 × 10−5 K−1, respectively.  相似文献   

15.
The thermal conductivity of natural, gem-quality diamond, which can be as high as 2500 Wm–1 K–1 at 25°C, is the highest of any known material. Synthetic diamond grown by chemical vapor deposition (CVD) of films up to 1 mm thick exhibits generally lower values of but under optimal growth conditions it can rival gem-quality diamond with values up to 2200 Wm–1 K–1. However, it is polycrystalline and exhibits a columnar microstructure. Measurements on free-standing CVD diamond, with a thickness in the range 25–400 m, reveal a strong gradient in thermal conductivity as a function of position z from the substrate surface as well as a pronounced anisotropy with respect to z. The temperature dependence of in the range 4 to 400 K has been analyzed to determine the types and numbers of phonon scattering centers as a function of z. The defect structure, and therefore the thermal conductivity, are both correlated with the microstructure. Because of the high conductivity of diamond, these samples are thermally thin. For example, laser flash data for a 25-m-thick diamond sample is expected to be virtually the same as laser flash data for a 1-m-thick fused silica sample. Several of the techniques described here for diamond are therefore applicable to much thinner samples of more ordinary material.  相似文献   

16.
The measurement of the thermal conductivity of liquids is rather complicated due to the nature of the fluid. To the conduction, which has to be characterized, are added the natural convection, the radiative transfer, and the perturbations caused by the presence of enclosure walls. The goal of this work, composed of two parts, is to implement an experimental bench allowing the measurement of the thermal diffusivity and thermal conductivity of liquids. The first part (Part I) presented here, is about pure conduction and focuses on several aspects involved in this measurement, which will lead one, based on theoretical and practical considerations, to choose a pulse method in a one-dimensional (1D) and cylindrical geometry to solve the problem. In the second section of this part, the problem of the parameters estimation is investigated with the presence of the walls of the measuring cell and this will allow us to define the characteristics of the walls (thickness and thermophysical properties). The entire problem is treated through the thermal quadrupoles method. Finally, in a last section, a setup at room temperature is described. The second part (Part II) of this work that is presented in another paper will show how it is possible to get rid of the convection by a judicious choice of the extension of the measuring cell and how the radiation effects can be taken into account to perform measurements at high temperatures (up to 500°C).Paper presented at the Seventh Asian Thermophysical Properties Conference, August 23–28, 2004, Hefei and Huangshan, Anhui, P. R. China.  相似文献   

17.
This paper presents new absolute measurements for the thermal conductivity and thermal diffusivity of gaseous argon obtained with a transient hot-wire instrument. Six isotherms were measured in the supercritical dense gas at temperatures between 296 and 423 K and pressures up to 61 MPa. A new analysis for the influence of temperature-dependent properties and residual bridge unbalance is used to obtain the thermal conductivity with an uncertainty of less than 1% and the thermal diffusivity with an uncertainty of less than 4%. Isobaric heat capacity results were derived from measured values of thermal conductivity and thermal diffusivity using a density calculated from an equation of state. The heat capacities presented here have a nominal uncertainty of 4% and demonstrate that this property can be obtained successfully with the transient hot wire technique over a wide range of fluid states. The technique will be useful when applied to fluids which lack specific heat data.  相似文献   

18.
薄膜热导率测试方法研究进展   总被引:1,自引:0,他引:1  
薄膜材料的热导率一般与其相应的块体材料有较大的差异.由于其厚度较小,对块体材料热导率的测试方法一般不适用于薄膜材料,因此近几十年来,研究工作者们发明了很多新的用于薄膜热导率的测试方法.综述了薄膜热导率的一些常用测试方法,着重介绍了薄膜热导率的最新测试方法的特点及其适用范围,并针对广泛使用的3ω法进行了详细介绍.  相似文献   

19.
为了降低固体氧化物燃料电池在制备和工作过程中产生的热应力, 提高电池的电化学性能, 在电池中引入功能梯度层可以有效减小电池各层之间材料参数的差异, 从而缓解各层之间的热失配应力。本研究将阳极功能层引入燃料电池中, 通过阳极功能层子层数目和非线性梯度成分指数n控制各子层材料属性的变化情况, 研究了燃料电池在800℃下的热应力分布。结果表明: 选取适当的指数n和阳极功能层的分层数目可以明显降低阳极层的最大拉应力和电解质层的最大压应力。  相似文献   

20.
In this paper, the thermal conductivity of a single carbon fiber under different manufacturing conditions is measured using the steady-state short-hot-wire method. This method is based on the heat transfer phenomena of a pin fin attached to a short hot wire. The short hot wire is supplied with a constant direct current to generate a uniform heat flux, and both its ends are connected to lead wires and maintained at the initial temperature. The test fiber is attached as a pin fin to the center position of the hot wire at one end and the other end is connected to a heat sink. One-dimensional steady-state heat conduction along the hot wire and test fiber is assumed, and the basic equations are analytically solved. From the solutions, the relations among the average temperature rise of the hot wire, the heat generation rate, the temperature at the attached end of the fiber, and the heat flux from the hot wire to the fiber are accurately obtained. Based on the relations, the thermal conductivity of the single carbon fiber can be easily estimated when the average temperature rise and the heat generation rate of the hot wire are measured for the same system. Further, the electrical conductivity of the single carbon fiber is measured under the same conditions as for the thermal conductivity using a four-point contact method. The relation between the thermal conductivity and electrical conductivity is further discussed, based on the crystal microstructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号