首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was conducted to examine the fate of Escherichia coli O157:H7 during the manufacture and aging of Gouda and stirred-curd Cheddar cheeses made from raw milk. Cheeses were manufactured from unpasteurized milk experimentally contaminated with one of three strains of E. coli O157:H7 at an approximate population level of 20 CFU/ml. Samples of milk, whey, curd, and cheese were collected for enumeration of bacteria throughout the manufacturing and aging process. Overall, bacterial counts in both cheese types increased almost 10-fold from initial inoculation levels in milk to approximately 145 CFU/g found in cheeses on day 1. From this point, counts dropped significantly over 60 days to mean levels of 25 and 5 CFU/g in Cheddar and Gouda, respectively. Levels of E. coli O157:H7 fell and stayed below 5 CFU/g after an average of 94 and 108 days in Gouda and Cheddar, respectively, yet remained detectable after selective enrichment for more than 270 days in both cheese types. Changes in pathogen levels observed throughout manufacture and aging did not significantly differ by cheese type. In agreement with results of previous studies, our results suggest that the 60-day aging requirement alone is insufficient to completely eliminate levels of viable E. coli O157:H7 in Gouda or stirred-curd Cheddar cheese manufactured from raw milk contaminated with low levels of this pathogen.  相似文献   

2.
The objective of this study was to determine the survival and growth characteristics of Escherichia coli O157:H7 in whey. A five-strain mixture of E. coli O157:H7 was inoculated into 100 ml of fresh, pasteurized or unpasteurized Cheddar cheese whey (pH 5.5) at 10(5) or 10(2) CFU/ml, and stored at 4, 10 or 15 degrees C. The population of E. coli O157:H7 (on Sorbitol MacConkey agar supplemented with 0.1% 4-methylumbelliferyl-beta-D-glucuronide) and lactic acid bacteria (on All Purpose Tween agar) were determined on days 0, 1, 4, 7, 14, 21 and 28. At all storage temperatures, survival of E. coli O157:H7 was significantly higher (P<0.01) in the pasteurized whey compared to that in the unpasteurized samples. At 10 and 15 degrees C, E. coli O157:H7 in pasteurized whey significantly (P<0.05) increased during the first week of storage, followed by a decrease thereafter. However at the same temperatures, E. coli O157:H7 exhibited a steady decline in the unpasteurized samples from day 0. At 4 degrees C, E. coli O157:H7 did not grow in pasteurized and unpasteurized whey; however, the pathogen persisted longer in pasteurized samples. At all the three storage temperatures, E. coli O157:H7 survived up to day 21 in the pasteurized and unpasteurized whey. The initial load of lactic acid bacteria in the unpasteurized whey samples was approximately 7.0 log10 CFU/ml and, by day 28, greater than 3.0 log10 CFU/ml of lactic acid bacteria survived in unpasteurized whey at all temperatures, with the highest counts recovered at 4 degrees C. Results indicate the potential risk of persistence of E. coli O157:H7 in whey in the event of contamination with this pathogen.  相似文献   

3.
Pasteurized whole ewe's and cow's milk was used in the manufacture of Feta end Telemes cheeses, respectively, according to standard procedures. In both cases, the milk had been inoculated with Escherichia coli O157:H7 at a concentration of ca. 5.1 log CFU/ml and with thermophilic or mesophilic starter cultures at a concentration of ca. 5.3 to 5.6 log CFU/ml. In the first 10 h of cheesemaking, the pathogen increased by 1.18 and 0.82 log CFU/g in Feta cheese and by 1.56 and 1.35 log CFU/ g in Telemes cheese for the trials with thermophilic and mesophilic starters, respectively. After 24 h of fermentation, a decrease in E. coli O157:H7 was observed for all trials. At that time, the pH was reduced to 4.81 to 5.10 for all trials. Fresh cheeses were salted and held at 16 degrees C for ripening until the pH was reduced to 4.60. Cheeses were then moved into storage at 4 degrees C to complete ripening. During ripening, the E. coli O157:H7 population decreased significantly (P < or = 0.001) and finally was not detectable in Feta cheese after 44 and 36 days and in Telemes cheese after 40 and 30 days for the trials with thermophilic and mesophilic starters, respectively. The estimated times required for one decimal reduction of the population of E. coli O157:H7 after the first day of processing were 9.71 and 9.26 days for Feta cheese and 9.09 and 7.69 days for Telemes cheese for the trials with thermophilic and mesophilic starters, respectively.  相似文献   

4.
The direct detection and estimation of concentration of Escherichia coli O157:H7 down to 1 CFU/g of cheese was achieved by conventional plating techniques. Cheese was manufactured with unpasteurized milk inoculated with E. coli O157: H7 at 34 +/- 3 CFU/ml. The numbers of E. coli O157:H7 were monitored during cheese ripening by plating on sorbitol MacConkey agar supplemented with cefixime and potassium tellurite (CT-SMAC) and on CT-O157:H7 ID medium. Using the pour plate method, E. coli O157:H7 colonies could easily be distinguished from non-O157:H7 colonies on CT-O157:H7 ID medium but not on CT-SMAC. Higher numbers of E. coli O157:H7 were detectable with O157:H7 ID medium. Latex agglutination and PCR were used to confirm the identification of typical E. coli O157:H7 colonies, and nontypical colonies as not being E. coli O157:H7. As few as 1 CFU/g of cheese could be detected. E. coli O157:H7 also was detected in deliberately contaminated milk at concentrations as low as 4 CFU/10 ml.  相似文献   

5.
This study compared the survival of three-strain mixtures (ca. 10(7) CFU ml(-1) each) of Salmonella typhimurium DT104, Listeria monocytogenes, and Escherichia coli O157:H7 in pasteurized and unpasteurized preservative-free apple cider (pH 3.3-3.5) during storage at 4 and 10 degrees C for up to 21 days. S. typhimurium DT104 populations decreased by <4.5 log10 CFU ml(-1) during 14 days storage at 4 and 10 degrees C in pasteurized cider, and by > or =5.5 log10 CFU ml(-1) during 14 days in unpasteurized cider stored at these temperatures. However, after 7 days at 4 degrees C, the S. typhimurium DT104 populations had decreased by only about 2.5 log10 CFU ml(-1) in both pasteurized and unpasteurized cider. Listeria monocytogenes populations decreased below the plating detection limit (10 CFU ml(-1)) within 2 days under all conditions tested. Survival of E. coli O157:H7 was similar to that of S. typhimurium DT104 in pasteurized cider at both 4 and 10 degrees C over the 21-days storage period, but E. coli O157:H7 survived better (ca. 5.0 log10 CFU ml(-1) decrease) than S. typhimurium DT104 (> 7.0 log10 CFU ml(-1) decrease) after 14 days at 4 degrees C in unpasteurized cider. In related experiments, when incubated in simulated gastric fluid (pH 1.5) at 37 degrees C, S. typhimurium DT104 and L. monocytogenes were eliminated (5.5-6.0 log10 CFU ml(-1) decrease) within 5 and 30 min, respectively, whereas E. coli O157:H7 concentrations decreased only 1.60-2.80 log10 CFU ml(-1) within 2 h.  相似文献   

6.
The behaviour of Escherichia coli O157:H7 was studied during the manufacture and ripening of raw goat milk lactic cheeses. Cheese was manufactured from raw milk in the laboratory and inoculated with E. coli O157:H7 to a final concentration of 10, 100 and 1000 cfu ml(-1). E. coli O157:H7 was counted by CT-SMAC (Mac Conkey Sorbitol Agar with cefixim and tellurite) and O157:H7 ID throughout the manufacturing and ripening processes. When the milk was inoculated with 10, 100 or 1000 cfu ml(-1), counts decreased to less than 1 log(10) g(-1) in curds just prior to moulding. However, viable E. coli O157:H7 were found in cheeses throughout processing, and even after 42 days of ripening. Results indicate that E. coli O157:H7 survives the lactic cheese manufacturing process. Thus, the presence of low numbers of E. coli O157:H7 in milk destined for the production of raw milk lactic cheeses can constitute a threat to the consumer.  相似文献   

7.
Raw milk, raw milk cheeses, and raw ground meat have been implicated in Escherichia coli O157:H7 outbreaks. Developing methods to detect these bacteria in raw milk and meat products is a major challenge for food safety. The aim of our study was to develop a real-time PCR assay to detect E. coli O157:H7 in raw milk cheeses and raw ground meat. Well-known primers targeting a mutation at position +93 of the uidA gene in E. coli O157:H7 were chosen, and a specific TaqMan-minor groove binder probe was designed. This probe targets another mutation, at position +191 of the uidA gene in E. coli O157:H7. The first step in the study was to evaluate the specificity of this probe with 156 different O157:H7/NM strains and 48 non-O157:H7/NM strains of E. coli. The sensitivity of the method was evaluated by pre- and postinoculation of cheeses and meat enrichments with different E. coli O157:H7 strains. All the E. coli O157:H7 isolates tested were positive, and none of the other bacteria were detected. Our results indicate that this method is sensitive enough to detect 10(2) E. coli O157:H7 isolates per ml of cheese or meat enrichment broth (24 h at 41.5° C) and is more sensitive than the International Organization for Standardization reference method. We can conclude that this new real-time PCR protocol is a useful tool for rapid, specific, and sensitive detection of E. coli O157:H7 in raw milk and raw ground meat products.  相似文献   

8.
Cheese may be manufactured in the United States using raw milk, provided the cheese is aged for at least 60 days at temperatures not less than 35 °F (1.7 °C). There is now increased concern among regulators regarding the safety of raw milk cheese due to the potential ability of foodborne pathogens to survive the manufacturing and aging processes. In this study, 41 raw milk cheeses were obtained from retail specialty shops, farmers’ markets, and on-line sources. The cheeses were then analyzed for the presence of Listeria monocytogenes, Salmonella, Escherichia coli O157:H7, Staphylococcus aureus, and Campylobacter. Aerobic plate counts (APC), coliform and yeast/mold counts were also performed. The results revealed that none of the enteric pathogens were detected in any of the samples tested. Five samples contained coliforms; two of those contained E. coli at less than 102 cfu/g. Three other cheese samples contained S. aureus. The APC and yeast-mold counts were within expected ranges. Based on the results obtained from these 41 raw milk cheeses, the 60-day aging rule for unpasteurized milk cheeses appears adequate for producing microbiologically safe products.  相似文献   

9.
The survival of Escherichia coli O157:H7 in the presence of one of two plant pathogens, Penicillium expansum and Glomerella cingulata, in wounds on apples was observed during 14 days storage at room temperature (RT) and at 4 degrees C. The aim of this work was to determine if changes in apple physiology caused by the proliferation of fungal decay organisms would foster the survival of E. coli O157:H7. Trials were performed where (A) plant pathogens (4 log10 spores) were added to apple wounds 4 days before the wounds were inoculated with E. coli O157:H7 (3 log10 CFU g(-1) apple) (both RT and 4 degrees C storage), (B) plant pathogens and E. coli O157:H7 were added on the same day (both RT and 4 degrees C storage), and (C) E. coli O157:H7 was added 2 days (RT storage) and 4 days (4 degrees C storage) before plant pathogens. In all trials E. coli O157:H7 levels generally declined to <1 log10 at 4 degrees C storage, and in the presence of P. expansum at 4 degrees C or RT. However, in the presence of G. cingulata at RT E. coli O157:H7 numbers increased from 3.18 to 4.03 log10 CFU g(-1) in the apple wound during trial A, from 3.26 to 6.31 log10 CFU g(-1) during trial B, and from 3.22 to 6.81 log10 CFU g(-1) during trial C. This effect is probably a consequence of the attendant rise in pH from 4.1 to approximately 6.8, observed with the proliferation of G. cingulata rot. Control apples (inoculated with E. coli O157:H7 only) were contaminated with opportunistic decay organisms at RT during trials A and B, leading to E. coli O157:H7 death. However, E. coli O157:H7 in control apples in trial C, where no contamination occurred, increased from 3.22 to 5.97 log10 CFU g(-1). The fact that E. coli O157:H7 can proliferate in areas of decay and/or injury on fruit highlights the hazards associated with the use of such fruit in the production of unpasteurized juice.  相似文献   

10.
Post-process contamination of fresh acid-curd cheeses with Escherichia coli O157:H7 may pose a risk considering the low infectious dose and the ability of the pathogen to survive in acidic foods. To evaluate its survival in Galotyri, a traditional Greek acid-curd cheese, portions (0.5 kg) of two commercial fresh products, one artisan (pH 3.9+/-0.1) and the other industrial (pH 3.7+/-0.1), were inoculated with approximately 3.0 or 6.5 log cfu g(-1) of a five-strain cocktail of E. coli O157:H7, including rifampicin-resistant derivatives of the strains ATCC 43895 and ATCC 51657, and stored aerobically at 4 and 12 degrees C. Survival was monitored for 28 days by plating cheese samples on tryptic soy agar with 100 mg l(-1) rifampicin (TSA+Rif), SMAC and Fluorocult E. coli O157:H7 agar media. The pathogen declined much faster (P<0.05) in the industrial as compared to the artisan cheeses at both temperatures. Thus, while E. coli O157:H7 became undetectable by culture enrichment after 14 days at 4 degrees C in industrial samples, irrespective of the inoculation level, populations of 1.4-1.9 and 4.2-5.1 log cfu g(-1) survived after 28 days in the corresponding artisan cheeses with the low and high inocula, respectively. Survival was longer and greater (P<0.05) on TSA+Rif than on SMAC and Fluorocult, indicating the presence of acid-injured cells. Interestingly, survival of E. coli O157:H7 after 14-28 days in cheeses was better at 12 degrees C than at 4 degrees C, probably due to yeasts which grew on the surface of temperature-abused cheeses. The large difference in the pathogen's inactivation between the industrial and artisan cheeses at 4 degrees C could not be associated with major differences in pH or type/concentration of organic acids, suggesting another anti-E. coli O157:H7 activity by the industrial starter. The high survival of the pathogen in artisan Galotyri under conditions simulating commercial storage should be of concern.  相似文献   

11.
Survival of Salmonella typhimurium and Escherichia coli O157:H7 was studied in model brines and brine from three cheese plants. Three strain mixtures of S. typhimurium and E. coli O157:H7 (10(6) CFU/ml) were inoculated separately into 23% model brine with or without added pasteurized whey (2%) and as a combined inoculum into the commercial brines. The model brines were incubated at 8 and 15 degrees C for 28 days, and the commercial brines at 4 and 13 degrees C for 35 days. Populations of both pathogens in the model brine + whey decreased slowly over 28 days (1.0-2.0 log CFU/ml) with greater survival at 8 degrees C than at 15 degrees C. Corresponding decreases in model brine without whey were 1.9-3.0 log CFU/ml, with greater survival at 8 degrees C than at 15 degrees C. Both S. typhimurium and E. coli O157:H7 survived significantly better (P < 0.05) at 4 degrees C than at 13 degrees C in two of the commercial brines. The survival of each pathogen in the commercial brines at 13 degrees C was significantly influenced by brine pH. Both pathogen populations decreased most rapidly in commercial brines during the first week of storage (2.5-4.0 and 2.3-2.8 log CFU/ml for S. typhimurium and E. coli O157:H7, respectively) with significant recovery (ca. 0.5 log CFU/ml increase) often occurring in the second week of storage. Counts changed little thereafter. Overall, E. coli O157:H7 survived better than S. typhimurium, with differences of 0.1-1.2 log CFU/ml between the two pathogens. Results of this study show that cheese brine could support the survival of contaminating S. typhimurium and E. coli O157:H7 for several weeks under typical brining conditions.  相似文献   

12.
Minas cheese is a typical Brazilian fresh cheese, manufactured by addition of rennin and CaCl2 to milk, followed by draining the curd. The intrinsic characteristics of this product make it favorable for growth of pathogens, including Escherichia coli O157:H7. The influence of the addition of a commercial mesophilic type O lactic culture to this product on the growth of this pathogen during storage at 8.5 degrees C was evaluated. Eight different formulations of Minas cheese were manufactured using raw or pasteurized milk and with or without salt and lactic culture. Individual portions of each formulation were transferred to sterile plastic bags and inoculated with E. coli O157:H7 to yield ca. 10(3) or 10(6) CFU/g. After blending by hand massaging the bags, samples were stored at 8.5 degrees C for up to 14 days. E. coli O157:H7 was counted after 1, 2, 7, and 14 days of storage using 3M Petrifilm Test Kit-HEC. Counts in samples without added lactic culture showed a 2-log increase in the first 24 h and remained constant during the following 14 days. Counts in samples with added lactic culture showed a 0.5-log increase in the first 24 h, followed by a decrease. These variations were statistically significant (P < 0.05). No significant variations (P > 0.05) were obtained for cheese samples manufactured with pasteurized or raw milk, with or without salt. Results indicate that the addition of type O lactic culture may be an additional safeguard to well-established good manufacturing practices and hazard analysis and critical control point programs in the control of growth of E. coli O157:H7 in Minas cheese.  相似文献   

13.
Growth and survival of a nontoxigenic strain of Escherichia coli O157:H7 (ATCC 43888) was determined in traditionally fermented pasteurized milk. Preheated milk was inoculated with 1% (v/v) of a mixed culture of Lactobacillus delbrueckii ssp. bulgaricus (NCIMB 11778) and Streptococcus salivarius ssp. thermophilus (NCIMB 110368) and incubated at 25, 30, 37 or 43 degrees C for 24 h. E. coli O157:H7 (10(5) CFU/ml) were introduced into the milk pre- and post-fermentation. Fermented milk samples were subsequently stored at either 4 degrees C (refrigerator temperature) or 25 degrees C (to mimic African ambient temperature) for 5 days. After 24 h of fermentation, the pH of the samples fermented at the higher temperatures of 37-43 degrees C decreased from 6.8 to 4.4-4.0 ( +/- 0.2) whereas at the lower temperature of 25 degrees C, the pH decreased to pH 5.0 +/- 0.1. During this period, viable counts for E. coli O157:H7 increased from 10(5) to 10(8) - 10(9) CFU/ml except in milk fermented at 43 degrees C wherein viability declined to 10(4) CFU/ml. In fermented (25-30 degrees C) milk stored at 4 degrees C for 5 days, E. coli O157:H7 viability decreased from 10(8-9) to 10(6-7) CFU/ml whereas milk fermented at 43 degrees C resulted in loss of detectable cells. In contrast, storage of fermented milk samples at 25 degrees C for 5 days eventually resulted in complete loss of viability irrespective of fermentation temperature. Stationary phase E. coli O157:H7 inoculated post-fermentation (25 and 43 degrees C) survived during 4 degrees C storage, but not 25 degrees C storage. Fermentation temperature and subsequent storage temperature are critical to the growth and survival of E. coli O157:H7 in traditional fermented products involving yoghurt starter cultures.  相似文献   

14.
Growth and survival of Escherichia coli O157:H7 and Listeria monocytogenes in steamed eggs and scrambled eggs held at different temperatures (5, 18, 22, 37, 55, and 60 degrees C) were investigated in the present study. Among the holding temperatures tested, both pathogens multiplied best at 37 degrees C followed by 22, 18, and 5 degrees C. In general, E. coli O157:H7 grew better in the egg products than L. monocytogenes did at all the storage temperatures tested except at 5 degrees C. E. coli O157:H7 did not grow in steamed eggs and scrambled eggs held at 5 degrees C. L. monocytogenes showed a slight population increase of approximately 0.6 to 0.9 log CFU/g in these egg products at the end of the 36-h storage period at 5 degrees C. The population of both pathogens detected in the egg products was affected by the initial population, holding temperature, and length of the holding period. It was also noted that L. monocytogenes was more susceptible than E. coli O157:H7 in steamed eggs held at 60 degrees C. After holding at 60 degrees C for 1 h, no detectable viable cells of L. monocytogenes with a population reduction of 5.4 log CFU/g was observed in steamed eggs, whereas a lower population reduction of only approximately 0.5 log CFU/ml was noted for E. coli O157:H7.  相似文献   

15.
Two naturally occurring antimicrobial agents were tested in packages of refrigerated ground beef for their ability to reduce the viability of Escherichia coli O157:H7 during storage. Allyl isothiocyanate (AITC) and Lactobacillus reuteri were tested separately and together for their action against a cocktail of five strains of E. coli O157:H7 in ground beef held at 4 degrees C for 25 days. Ground beef prepared from whole, raw inside round beef roasts was inoculated with low (3 log CFU/g) or high (6 log CFU/g) levels of the E. coli O157:H7 mixture. The beef was treated with AITC (about 1,300 ppm), L. reuteri, or both, along with 250 mM of glycerol per kg of meat at two levels (3 and 6 log CFU/g) and according to a design that yielded 8 controls plus 10 different treatments. Samples were analyzed for E. coli O157:H7 survivors, numbers of total bacteria, and lactic acid bacteria on days 0 to 25 at 5-day intervals. L. reuteri at both input levels with glycerol killed E. coli O157:H7 at both inoculated levels before day 20. AITC completely eliminated E. coli O157:H7 at the low-inoculum level (3 log CFU/g) and reduced viability >4.5 log CFU/g at the high-inoculum level (6 log CFU/g) by the end of the storage period. The combination of L. reuteri and AITC did not yield an additive effect against E. coli O157:H7 viability. L. reuteri in the presence of glycerol was highly effective against E. coli O157:H7 in ground beef during refrigerated storage (4 degrees C) in modified atmosphere packages. Sensory testing is planned to evaluate effects of treatments.  相似文献   

16.
17.
Ice can be used to chill romaine lettuce and maintain relative humidity during transportation. Escherichia coli O157:H7 may contaminate water used for ice. The objective of this study was to determine the potential for E. coli O157:H7 contamination of romaine lettuce from either ice contaminated with the pathogen or by transfer from lettuce surfaces via melting ice. In experiment 1, lettuce was spot inoculated with E. coli O157:H7 and chilled with ice prepared from uncontaminated tap water. In experiment 2, water inoculated with this pathogen was frozen and used to ice lettuce. Three heads of lettuce were stacked in each container and stored at 4 or 20 degrees C. After the ice melted, E. coli O157:H7 attachment to and recovery from the lettuce leaves were determined. For experiment 1, the population of E. coli O157:H7 attached to inoculated sites averaged 3.8 and 5.5 CFU/cm2 at 4 and 20 degrees C, respectively. Most of the uninoculated sites became contaminated with the pathogen due to ice melt. For experiment 2, 3.5 to 3.8 log CFU E. coli O157:H7 per cm2 was attached to the top leaf on the first head. After rinsing with chlorinated water (200 microg/ml), E. coli O157:H7 remained on the surface of the top head (1.8 to 2.0 log CFU/cm2). There was no difference in numbers of E. coli O157:H7 recovered from each sampling site at 4 and 20 degrees C. Results show that E. coli O157:H7 can be transferred onto other produce layers in shipping containers from melted ice made of contaminated water and from contaminated to uncontaminated leaf surfaces.  相似文献   

18.
Inactivation profiles of Escherichia coli O157:H7 in inoculated bovine manure-based compost ingredients were determined by composting these ingredients in a bioreactor under controlled conditions. A 15-liter bioreactor was constructed to determine the fate of E. coli O157:H7 and changes in pH, moisture content, temperature, and aerobic mesophilic and thermophilic bacterial counts during composting. Fresh cow manure, wheat straw, cottonseed meal, and ammonium sulfate were combined to obtain a moisture content of ca. 60% and a carbon/nitrogen ratio of 29:1. The compost ingredients were held in the bioreactor at a constant external temperature of 21 or 50 degrees C. Self-heating of the ingredients due to microbial activity occurred during composting, with stratified temperatures occurring within the bioreactor. At an external temperature of 21 degrees C, self-heating occurred for 0 to 3 days, depending on the location within the bioreactor. E. coli O157:H7 populations increased by 1 to 2 log10 CFU/g during the initial 24 h of composting and decreased by ca. 3.5 log10 CFU/g near the bottom of the bioreactor and by ca. 2 log10 CFU/g near the middle and at the top during 36 days of composting. At an external temperature of 50 degrees C. E. coli O157:H7 was inactivated rapidly (by ca. 4.9 log10 CFU/g at the top of the bioreactor, by 4.0 log10 CFU/g near the middle, and by 5.9 log10 CFU/g near the bottom) within 24 h of composting. When inoculated at an initial level of ca. 10(7) CFU/g. E. coli O157:H7 survived for 7 days but not for 14 days at all three sampling locations, as indicated by either direct plating or enrichment culture. At the top of the bioreactor a relatively constant moisture content of 60% was maintained, whereas the moisture content near the bottom decreased steadily to 37 to 45% over 14 days of composting. The pH of the composting mixture decreased to ca. 6 within 1 to 3 days and subsequently increased to 8 to 9. Results obtained in this study indicate that large populations (10(4) to 10(7) CFU/g) of E coli O157:H7 survived for 36 days during composting in a bioreactor at an external temperature of 21 degrees C but were inactivated to undetectable levels after 7 to 14 days when the external temperature of the bioreactor was 50 degrees C. Hence, manure contaminated with large populations (e.g., 10(7) CFU/g) of E. coli O157:H7 should be composted for more than 1 week, and preferably for 2 weeks, when held at a minimum temperature of 50 degrees C.  相似文献   

19.
Previous studies conducted in our laboratory revealed that Escherichia coli O157:H7 cells capable of producing colanic acid (CA), the acidic polysaccharide of mucoid slime, had increased tolerance to sublethal heat and the extreme pH of microbiological culture media. This study was undertaken to determine the effect of CA on the fate of E. coli O157:H7 during the processing and storage of an acid food: yogurt. Pasteurized and homogenized whole milk was inoculated with a wild-type E. coli O157:H7, its CA-deficient mutant, or a mixture (1:1) of the two strains. Set yogurt was processed from the contaminated milk and stored at 4 degrees and 15 degrees C for 3 weeks. Samples of milk and yogurt were withdrawn during processing and storage and analyzed for total plate counts and populations of E. coli O157:H7 and starter cultures. The results showed that E. coli O157:H7 survived longer in yogurt stored at 15 degrees C than at 4 degrees C. Cells of E. coli O157:H7 deficient in CA production died off more rapidly than those of the parent strain. This suggests that CA plays a role in protecting cells of E. coli O157:H7 from stress during the processing and storage of set yogurt.  相似文献   

20.
Because of renewed interest in specialty cheeses, artisan and farmstead producers are manufacturing surface-mold-ripened soft cheeses from raw milk, using the 60-day holding standard (21 CFR 133.182) to achieve safety. This study compared the growth potential of Listeria monocytogenes on cheeses manufactured from raw or pasteurized milk and held for > 60 days at 4 degrees C. Final cheeses were within federal standards of identity for soft ripened cheese, with low moisture targets to facilitate the holding period. Wheels were surface inoculated with a five-strain cocktail of L. monocytogenes at approximately 0.2 CFU/ cm2 (low level) or 2 CFU/cm2 (high level), ripened, wrapped, and held at 4 degrees C. Listeria populations began to increase by day 28 for all treatments after initial population declines. From the low initial inoculation level, populations in raw and pasteurized milk cheese reached maximums of 2.96 +/- 2.79 and 2.33 +/- 2.10 log CFU/g, respectively, after 60 days of holding. Similar growth was observed in cheese inoculated at high levels, where populations reached 4.55 +/- 4.33 and 5.29 +/- 5.11 log CFU/g for raw and pasteurized milk cheeses, respectively. No significant differences (P < 0.05) were observed in pH development, growth rate, or population levels between cheeses made from the different milk types. Independent of the milk type, cheeses held for 60 days supported growth from very low initial levels of L. monocytogenes introduced as a postprocess contaminant. The safety of cheeses of this type must be achieved through control strategies other than aging, and thus revision of current federal regulations is warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号