首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
提出了一种基于拉子群优化的可能性c均值(Possibilistic Gmeans, PCM)聚类改进方法。该方法首先通过 改进PCM算法的目标函数来计算数据模式的隶属度矩阵和聚类中心完成粒子编码,从而降低算法对初始中心的敏 感,提高聚类的精度;其次,通过粒子群优化(Particle Swarm Optimization, PSO)算法对编码进行优化,以有效地克服 PCM聚类算法容易导致聚类一致性和陷入局部最优解的缺点,减少算法的迭代次数。通过人造数据集和UCI数据 集上的实验,表明该算法在计算复杂度、聚类精度和全局寻优能力方面表现得较为突出。  相似文献   

2.
针对模糊C均值(FCM)算法聚类数需要预先设定的问题,提出了一种新的模糊聚类有效性指标。首先,计算簇中每个属性的方差,给方差较小的属性赋予较大的权值,给方差较大的属性赋予较小的权值,得到一种基于属性加权的FCM算法;然后,根据FCM改进算法得到的隶属度矩阵计算类内紧致性和类间分离性;最后,利用类内紧致性和类间分离性定义一个新的聚类有效性指标。实验结果表明,该指标可以找到符合数据自然分布的类的数目。基于属性加权的FCM算法可以识别不同属性的重要程度,增加聚类结果的准确率,使用FCM改进算法得到的隶属度矩阵定义的有效性指标,能够发现正确的聚类个数,实现聚类无监督的学习过程。  相似文献   

3.
区域匹配相关跟踪方法的一种改进   总被引:2,自引:0,他引:2  
工程中能应用的实时相关跟踪算法不多 ,如多点相关 (MPC)是工程中最常用的一种算法 ,但是MPC算法没有很好的相关置信度函数 ,使 MPC算法的应用受到一些限制和影响 .本文通过对一种有较好相关置信度函数的区域相关算法 (RTC)的讨论和研究 ,分析了算法中影响目标跟踪效果与成败的 2个关键环节——图像增强、图像分割 ,在原来算法的基础上给出有效的改进措施和相应的实验结果 .  相似文献   

4.
本文提出了一种基于模糊规则的分类方法。首先介绍了一种新的模糊规则提取方法,然后基于所提取的模糊规则给出了一个采用二级判决的分类算法,并利用IRIS数据对此分类算法进行了仿真测试。结果表明,该算法在训练样本较少的情况下,仍能得到很好的分类效果.  相似文献   

5.
模糊C均值聚类容易受噪声数据影响,进而影响聚类准确率.鉴于此,提出了一种改进萤火虫算法的模糊聚类方法.该方法首先在萤火虫算法中引入Chebyshev映射初始化种群的分布;然后提出一种自适应步长方法来平衡探索与开发能力;最后在局部搜索过程中对每次迭代的最优个体加入高斯扰动策略,使其跳出局部最优.该过程拥有良好的寻优能力,...  相似文献   

6.
为解决模糊C均值(FCM)聚类算法在入侵检测中存在的检测效率低的问题,提出一种改进方法,将改进的模糊C均值聚类算法应用于入侵检测。测试表明,该算法有效提高了聚类检测的检测率,降低了误检测率,具有可行性和有效性。  相似文献   

7.
提出了一种基于改进的模糊 C 均值聚类的模糊规则提取方法。然后基于所提取的模糊规则给出了一种分类算法,并利用 IRIS 数据对此分类算法进行了仿真测试。结果表明,该算法在训练祥本较少的情况下,仍能得到很好的分类效果,由此说明所提出的模糊规则生成方法有效。  相似文献   

8.
庞淑敬  彭建 《微计算机信息》2012,(1):161-162,172
针对数据集中若存在孤立点或者是噪声数据会影响模糊C均值聚类算法(FCM)的聚类性能问题,本文将离群点的辨认方法与FCM算法相结合,提出一种改进的FCM聚类算法。该算法有效地降低了孤立点或噪声数据对正常数据的影响,提高了FCM算法的聚类精度。将该算法在入侵检测系统中进行实验验证,通过与FCM算法进行对比分析,证明了该算法的有效性和可行性。  相似文献   

9.
文章提出了一种基于模糊规则的分类方法。该方法首先介绍了基于模糊C均值聚类的模糊规则提取,然后利用所建立的模糊规则库设计了一种分类算法,并且利用启发式搜索来精简分类规则。使用IRIS数据对该文的方法进行了性能测试,结果表明该方法在训练样本较少的情况下,能得到很好的分类效果,并且通过规则精简,所使用的规则数目大大下降,而分类性能更加优良。  相似文献   

10.
一种改进的模糊C-均值聚类算法   总被引:1,自引:0,他引:1  
模糊C-均值聚类是一种经典的聚类方法.针对模糊C-均值算法对初始值敏感、收敛结果易陷入局部极小的问题,通过对原始数据的预处理,将欧氏距离推广到广义欧氏距离,得到了加权模糊C-均值聚类的迭代公式,实证分析表明改进后的方法得到的分类结果与嵌入遗传算法的分类基本一致,而且通过非参数检验证实分类效果良好.  相似文献   

11.
改进的MPCA及其在批过程实时故障监测中的应用   总被引:1,自引:1,他引:1  
针对多向主元分析(MPCA)模型批过程在线监测的缺陷,提出了一种基于变量展开和主元协方差随时间变化的MPCA方法,该方法按变量展开,不需要对新批次未反应完的数据进行预估,而数据之间的动态联系通过时变主元协方差得以保存,并且不需要建模批次的长度相等;将该力法应用于青霉素补料分批发酵过程的实时监测中.结果表明该方法比传统的MPCA方法具有更可靠的监测性能。  相似文献   

12.
基于多时段MPCA模型的间歇过程监测方法研究   总被引:4,自引:1,他引:4  
常玉清  王姝  谭帅  王福利  杨洁 《自动化学报》2010,36(9):1312-1320
针对间歇过程的多时段特性, 提出一种新的生产操作时段划分方法. 该方法利用反映过程特性变化的主成分个数、负载矩阵以及主成分矩阵的变化实现间歇过程子时段的三步划分. 根据各时间片主成分个数不同, 对生产操作时段进行粗划分. 为了更客观地反映负载矩阵以及主成分矩阵的相似性, 提出了基于加权负载向量夹角余弦的负载矩阵相似度度量以及基于加权主成分欧氏距离的主成分矩阵相似度度量方法. 以相似度最小原则, 对时间片矩阵进行奖惩竞争聚类, 进而实现了生产操作子时段的细划分. 将基于改进时段划分方法的MPCA建模应用于注塑成型过程在线监测, 实验结果验证了该方法的有效性.  相似文献   

13.
肖应旺 《控制工程》2011,18(2):299-303
针对多向主元分析(MPCA)方法用于批过程在线监测时需要对新批次未反应完的数据进行预估,从而易导致误诊断,且需要建模批次的长度相等的缺陷,提出了一种基于变量展开和主元协方差随时间变化的MPCA方法.该方法按变量展开,不需要对新批次未反应完的数据进行预估,而数据之间的动态联系通过时变主元协方差得以保存,并且不需要建模批次...  相似文献   

14.
提出一种将减法聚类与改进的模糊C-均值聚类相结合并用于说话人识别的方法.该方法将从语 音信号中提取的Mel 频率倒谱系数及其差分作为特征参数;用减法聚类算法初始化聚类中心,再用改进的模 糊C-均值聚类算法进行修正,形成码本.识别时,对每一个待识别语音进行模糊聚类识别.仿真结果表明,该 方法比改进的模糊C-均值聚类算法识别率高,具有较好的鲁棒性,且计算比较简单.  相似文献   

15.
针对传统的多向主元分析(Multiway Principal Component Analysis,MPCA)常会导致误诊断,且对批生产过程难以保证在线状态监测和故障诊断的实时性,提出了一种改进的MPCA与动态时间错位(Dynamitc Time Warping,DTW)方法,该方法采用多模型非线性结构代替传统的MPCA单模型线性化结构,并利用对称式DTW算法解决了多元轨迹同步化的问题。将该方法应用到青霉素发酵批过程的在线故障监测中,结果表明它克服了MPCA不能处理非线性过程和实时性问题,并避免了MPCA在线应用时预报未来测量值带来的误差,提高了批过程性能监测和故障诊断的准确性。  相似文献   

16.
针对多向主元分析(MPCA)不能提取复杂的非线性系统变量间的非线性特性以及T2统计量置信限的确定是以主元得分呈正态分布为假设前提的情况,提出了一种基于自组织神经网络与核密度估计的非线性MPCA在线故障监测方法.该方法用自组织神经网络去提取变量间的非线性特征信息;用核概率密度函数去估计非线性主元的置信限.将该方法应用到β-甘露聚糖酶补料分批发酵过程的在线故障监测中,应用效果表明用非线性主元比用同样数目的线性主元能够获取更多的变量信息,并且用核密度估计置信限的方法比用参数估计的方法能更准确地对故障进行监测.  相似文献   

17.
针对MPCA方法在具有多时段的间歇过程中的故障监测效果不佳的问题,提出一种新的多时段建模方法,首先根据各时间片上的主元个数不同,对过程进行模糊划分,然后利用K均值算法对样本数据聚类得到精确划分,最后按照划分结果在各阶段建立代表性统计分析模型对整个过程进行监控。将该方法用于半导体蚀刻过程的故障监测,并与MPCA方法进行了比较证明该方法具有良好的监控性能,能够及时准确及时的监测出引起产品质量发生变化的故障。  相似文献   

18.
传统统计分析方法忽略了变量间作用关系,而传递熵可以有效地表达变量间作用关系,因此提出了一种基于传递熵的MPCA间歇过程监测方法.利用传递熵表达变量间的作用关系,在计算传递熵时采用非参数核密度估计法,利用该方法不依赖于数据先验分布知识的特点来处理非高斯分布的过程数据,通过构建传递熵矩阵,结合滑动窗,实现对间歇过程变量间信息传递的动态表达,最后对传递熵矩阵进行多向主元分析方法(MPCA)建模,实现间歇过程监测.通过青霉素发酵的仿真,结果表明与传统多变量统计过程控制(MSPC)方法作对比,本文监测方法能更及时准确地监测到过程异常.  相似文献   

19.
For the complex batch process with characteristics of unequal batch data length, a novel data-driven batch process monitoring method is proposed based on mixed data features analysis and multi-way kernel entropy component analysis (MDFA-MKECA) in this paper. Combining the mechanistic knowledge, different mixed data features of each batch including statistical and thermodynamics entropy features, are extracted to finish data pre-processing. After that, MKECA is applied to reduce data dimensionality and finally establish a monitoring model. The proposed method is applied to a reheating furnace industry process, and the experimental results demonstrate that the MDFA-MKECA method can reduce the calculated amount and effectively provide on-line monitoring of the batch process.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号