首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
研究溴化异丁烯-对甲基苯乙烯共聚物(BIMSM)/高岭土纳米复合材料在药用丁基橡胶(IIR)胶塞中的应用。结果表明:BIMSM/高岭土纳米复合材料具有优异的气密性和耐热老化性能;用BIMSM/高岭土纳米复合材料生产的药用IIR胶塞穿刺落屑性能和气密性均显著改善,同时可减小胶塞厚度。  相似文献   

2.
主要研究了纳米高岭土对溴化异丁烯-对甲基苯乙烯共聚物(BIMSM)胶料气密性的影响,以及硫化时间和老化对BIMSM纳米复合材料气密性的影响。结果表明,BIMSM纳米复合材料具有优异的气密性和耐老化性能,并且明显优于BIMSM橡胶。  相似文献   

3.
刘欣然  朱然 《轮胎工业》2013,33(4):198-201
介绍溴化异丁烯与对甲基苯乙烯共聚物(BIMSM弹性体)在轮胎气密层、胎面和胎侧中的应用情况。与氯化丁基橡胶和溴化丁基橡胶相比,采用BIMSM弹性体的气密层气密性能更好,且耐热性能和耐屈挠性能显著改善;添加纳米填料的BIMSM纳米复合材料可以进一步提高气密层气密性能;采用BIMSM弹性体/尼龙动态硫化合金可以在气密层厚度减小80%的情况下大幅提高气密性能。胎面胶采用BIMSM弹性体可以提高轮胎的牵引性能和耐磨性能。非污染性黑胎侧胶采用BIMSM弹性体可以改善胶料的综合物理性能。  相似文献   

4.
轮胎内胎及内衬层用弹性体的研究进展   总被引:1,自引:0,他引:1  
郑华  王超  姜菲 《弹性体》2011,21(1):98-103
综述了轮胎内胎及内衬层用弹性体的发展进程,从最早使用的天然橡胶、丁苯橡胶到气密性优异的丁基橡胶、卤化丁基橡胶和DVA树脂,重点介绍了性能优异的新型纳米复合材料。采用纳米复合材料是内胎和内衬层技术的最新发展趋势,它能极大地提高内胎及内衬层的气密性,进而显著地提高轮胎的耐久性和使用寿命。  相似文献   

5.
《中国橡胶》2005,21(2)
国家食品药品管理局462号文件规定,从2004年年底以后所有药品包装瓶一律停止使用天然橡胶瓶塞。至此,在我国沿用了很长时间的药用天然橡胶瓶塞将退出历史舞台,由化学稳定性、气密性、低萃取性优异和生物性良好的丁基橡胶塞取代。在我国,丁基橡胶塞自1995年来,就一直得到国家相关部门的大力推广,国内药品的许多品种已经使用丁基橡胶瓶塞,丁基橡胶塞产业已经过十几年的发展。药用天然胶塞退出历史舞台  相似文献   

6.
硅氧烷硫化体系是药用卤化丁基橡胶塞的一种特殊硫化体系。本文研究了硅氧烷硫化体系对药用丁基橡胶塞性能的影响。试验结果表明,硅氧烷硫化体系是卤化丁基橡胶塞一种有效的无锌无硫的硫化体系,并且用其生产的药用卤化丁基橡胶塞在与一些活性较高的药品上应用时有较好的相容性,可以达到覆膜胶塞的水平。  相似文献   

7.
纳米高岭土在药用卤化丁基橡胶瓶塞中的应用   总被引:2,自引:0,他引:2  
主要介绍了纳米高岭土的工艺性能特点及其在药用溴化丁基橡胶(BIIR)瓶塞中的应用。实验结果表明,纳米高岭土完全可以用于药用丁基橡胶瓶塞,并且能改善或解决药用丁基橡胶瓶塞的耐穿刺性能、气密性能以及与药品制剂的澄明度和相容性等物理和化学性能。  相似文献   

8.
丁基橡胶/有机黏土纳米复合材料的结构和性能   总被引:3,自引:0,他引:3  
采用溶液插层法制备了丁基橡胶/有机黏土纳米复合材料,并用透射电子显微镜和X射线衍射仪研究了该纳米复合材料的形态结构。结果表明,丁基橡胶/有机黏土纳米复合材料是插层型的纳米复合材料。与丁基橡胶相比,该纳米复合材料具有优异的力学性能和气体阻隔性能,并且这2种性能均随有机黏土用量的增加而增强。填料的形状会对该纳米复合材料的气体阻隔性能产生影响。  相似文献   

9.
研究粘土/丁苯橡胶(SBR)纳米复合材料等量代替溴化丁基橡胶(BIIR)在半钢子午线轮胎气密层胶中的应用。结果表明:粘土/SBR纳米复合材料制备的气密层胶交联密度大,物理性能提高,气密性明显改善;在胎坯成型二段充气时炸胎率明显减小;成品轮胎气压保持率大,速度性能和耐久性能均符合企业标准要求。与BIIR气密层胶相比,粘土/SBR纳米复合材料气密层胶成本较低,密度较大,厚度可以适当减小。  相似文献   

10.
刘海洪  吴锋  彭刚 《中国橡胶》2005,21(4):24-25
药用丁基橡胶瓶塞现已成为目前医药包装行业的一个热点,根据国家药监局国药管注犤2000犦 第462号文件规定,2004年年底淘汰天然胶塞,全部改用丁基胶塞,市场需求量150亿只左右。对药用瓶塞而言,橡胶本身所具有的特性,如高弹性、可获得良好的密封性能和再密封性能;低的透气和透水性;良好的物理和化学性能;耐灭菌和相容性等,对瓶塞的质量很关键。用于医药包装的橡胶通常有丁基橡胶(IIR )、卤化丁基橡胶(X IIR )、丁腈橡胶( N BR )氯丁橡胶(CR )、天然橡胶(N R )等。药用丁基橡胶以其优异的结构和性能,成为…  相似文献   

11.
12.
Vismiones and ferruginins, representatives of a new class of lypophilic anthranoids from the genusVismia were found to inhibit feeding in larvae of species ofSpodoptera, Heliothis, and inLocusta migratoria.  相似文献   

13.
14.
Despite its industrial importance, the subject of freeze-thaw (F/T) stability of latex coatings has not been studied extensively. There is also a lack of fundamental understanding about the process and the mechanisms through which a coating becomes destabilized. High pressure (2100 bar) freezing fixes the state of water-suspended particles of polymer binder and inorganic pigments without the growth of ice crystals during freezing that produce artifacts in direct imaging scanning electron microscopy (SEM) of fracture surfaces of frozen coatings. We show that by incorporating copolymerizable functional monomers, it is possible to achieve F/T stability in polymer latexes and in low-VOC paints, as judged by the microstructures revealed by the cryogenic SEM technique. Particle coalescence as well as pigment segregation in F/T unstable systems are visualized. In order to achieve F/T stability in paints, latex particles must not flocculate and should provide protection to inorganic pigment and extender particles. Because of the unique capabilities of the cryogenic SEM, we are able to separate the effects of freezing and thawing, and study the influence of the rate of freezing and thawing on F/T stability. Destabilization can be caused by either freezing or thawing. A slow freezing process is more detrimental to F/T stability than a fast freezing process; the latter actually preserves suspension stability during freezing. Presented at the 82nd Annual Meeting of the Federation of Societies for Coatings Technology, October 27–29, 2004 in Chicago, IL. Tied for first place in The John A. Gordon Best Paper Competition.  相似文献   

15.
16.
17.
In 2002–2004, we examined the flight responses of 49 species of native and exotic bark and ambrosia beetles (Coleoptera: Scolytidae and Platypodidae) to traps baited with ethanol and/or (−)-α-pinene in the southeastern US. Eight field trials were conducted in mature pine stands in Alabama, Florida, Georgia, North Carolina, and South Carolina. Funnel traps baited with ethanol lures (release rate, about 0.6 g/day at 25–28°C) were attractive to ten species of ambrosia beetles (Ambrosiodmus tachygraphus, Anisandrus sayi, Dryoxylon onoharaensum, Monarthrum mali, Xyleborinus saxesenii, Xyleborus affinis, Xyleborus ferrugineus, Xylosandrus compactus, Xylosandrus crassiusculus, and Xylosandrus germanus) and two species of bark beetles (Cryptocarenus heveae and Hypothenemus sp.). Traps baited with (−)-α-pinene lures (release rate, 2–6 g/day at 25–28°C) were attractive to five bark beetle species (Dendroctonus terebrans, Hylastes porculus, Hylastes salebrosus, Hylastes tenuis, and Ips grandicollis) and one platypodid ambrosia beetle species (Myoplatypus flavicornis). Ethanol enhanced responses of some species (Xyleborus pubescens, H. porculus, H. salebrosus, H. tenuis, and Pityophthorus cariniceps) to traps baited with (−)-α-pinene in some locations. (−)-α-Pinene interrupted the response of some ambrosia beetle species to traps baited with ethanol, but only the response of D. onoharaensum was interrupted consistently at most locations. Of 23 species of ambrosia beetles captured in our field trials, nine were exotic and accounted for 70–97% of total catches of ambrosia beetles. Our results provide support for the continued use of separate traps baited with ethanol alone and ethanol with (−)-α-pinene to detect and monitor common bark and ambrosia beetles from the southeastern region of the US.  相似文献   

18.
Halyomorpha halys (Stål) (Pentatomidae), called the brown marmorated stink bug (BMSB), is a newly invasive species in the eastern USA that is rapidly spreading from the original point of establishment in Allentown, PA. In its native range, the BMSB is reportedly attracted to methyl (E,E,Z)-2,4,6-decatrienoate, the male-produced pheromone of another pentatomid common in eastern Asia, Plautia stali Scott. In North America, Thyanta spp. are the only pentatomids known to produce methyl 2,4,6-decatrienoate [the (E,Z,Z)-isomer] as part of their pheromones. Methyl 2,4,6-decatrienoates were field-tested in Maryland to monitor the spread of the BMSB and to explore the possibility that Thyanta spp. are an alternate host for parasitic tachinid flies that use stink bug pheromones as host-finding kairomones. Here we report the first captures of adult and nymph BMSBs in traps baited with methyl (E,E,Z)-2,4,6-decatrienoate in central Maryland and present data verifying that the tachinid, Euclytia flava (Townsend), exploits methyl (E,Z,Z)-2,4,6-decatrienoate as a kairomone. We also report the unexpected finding that various isomers of methyl 2,4,6-decatrienoate attract Acrosternum hilare (Say), although this bug apparently does not produce methyl decatrienoates. Other stink bugs and tachinids native to North America were also attracted to methyl 2,4,6-decatrienoates. These data indicate there are Heteroptera in North America in addition to Thyanta spp. that probably use methyl 2,4,6-decatrienoates as pheromones. The evidence that some pentatomids exploit the pheromones of other true bugs as kairomones to find food or to congregate as a passive defense against tachinid parasitism is discussed.  相似文献   

19.
收集了2007年7月~2008年6月世界塑料工业的相关资料,介绍了2007~2008年国外塑料工业的发展情况,提供了世界塑料产量、消费量及全球各类树脂的需求量及产能情况.按通用热塑性树脂(聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯、ABS树脂)、工程塑料(尼龙、聚碳酸酯、聚甲醛、热塑性聚酯、聚苯醚)、特种工程塑料(聚苯·硫醚、液晶聚合物、聚醚醚酮)、通用热固性树脂(酚醛、聚氨酯、不饱和聚酯树脂、环氧树脂)不同品种的顺序,对树脂的产量、消费量、供需状况及合成工艺、产品应用开发、树脂品种的延伸及应用的进一步扩展等技术作了详细介绍.  相似文献   

20.
收集了2005年7月~2006年6月国外塑料工业的相关资料,介绍了2005—2006年国外塑料工业的发展情况。提供了世界塑料产量、消费量及全球各类树脂生产量以及各国塑料制品的进出口情况。作为对比,介绍了中国塑料的生产情况。按通用热塑性树脂(聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯、ABS树脂)、工程塑料(聚酰胺、聚碳酸酯、聚甲醛、热塑性聚酯、聚苯醚)、通用热固性树脂(酚醛、聚氨酯、不饱和树脂、环氧树脂)、特种工程塑料(聚苯硫醚、液晶聚合物、聚醚醚酮)的品种顺序,对树脂的产量、消费量、供需状况及合成工艺、产品开发、树脂品种的延伸及应用的扩展作了详细的介绍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号