首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
R22和R417A在水平强化管外的凝结换热实验研究   总被引:4,自引:0,他引:4  
用实验的方法研究了非共沸工质R417A在水平强化换热管管外的凝结换热性能,并与R22做了对比.试验管为两种强化换热管-斜翅管和矩翅管.结果表明:对于斜翅管,同等的壁面过冷度下,R417A的凝结换热系数大于R22的管外换热系数;对于矩翅管,同等的壁面过冷度下,R22的凝结换热系数大于R417A的凝结换热系数;在工质R417A下,两种强化管的凝结管外换热系数随壁面过冷度的变化率都比R22大,其原因应该与R417A作为一种非共沸制冷剂的温度滑移特性有关.从强化换热的角度考虑,对于表面张力较小的工质,选用斜翅管更有利.  相似文献   

2.
针对一种双侧强化换热管,实验测试和分析了制冷工质R404A在管外凝结与水在管内对流的传热规律,采用"Wilson图解法"和"Gnielinski法"两种不同的方法对实验数据进行了处理。经理论分析和实验研究表明,Wilson图解法对于双侧强化换热管管内、管外表面传热系数实验容易产生较大误差,"Gnielinski法"是更合适的方法。实验得出了管内对流传热和管外凝结传热的计算关联式及传热的强化倍率。对于制冷剂R404A,在强化管外凝结的表面传热系数随着壁面过冷度的增加而增大,呈现出与纯工质光滑管外冷凝时不同的变化趋势。  相似文献   

3.
提出R404A直接接触凝结换热的制冷循环,分析R404A直接接触凝结制冷循环的热力性能,并与常规双级压缩制冷循环的性能进行对比。得出结论:在一定的冷凝温度、蒸发温度和过冷液体的过冷度下,直接接触凝结制冷循环存在最佳的饱和液体温度,并在此最佳的饱和液体温度下,获得最优的性能和最小的冷凝热负荷,随着过冷液体的过冷度增大和蒸发温度升高,直接接触凝结制冷循环的性能系数增加、冷凝热负荷减少,获得最优性能的最佳饱和液体温度值提高。过冷液体的过冷度为25℃时,直接接触凝结制冷循环的最佳性能系数较双级压缩制冷循环的最佳性能系数提高6.2%。直接接触凝结制冷循环的最小冷凝热负荷较双级压缩制冷循环的最小冷凝热负荷减小1.8%。  相似文献   

4.
对制冷工质R22在针翅管外凝结换热进行实验研究。使用2根不同几何参数的针翅管进行凝结换热实验,得到总换热系数与管内流速、管外冷凝换热系数与管内流速的关系的曲线,并拟合出管外冷凝换热系数与热流密度的关系式。实验结果表明:管内水流速0.4~2.0m/s范围内,两根冷凝管中2撑管换热性能较好。  相似文献   

5.
本文建立了以R134a为冷却工质的封闭式喷雾冷却系统,研究了工质过冷度、质量流量和热流密度对喷雾冷却系统换热性能的影响。其中,工质过冷度由喷嘴入口前的过冷段控制,质量流量通过变频齿轮泵调节,热流密度通过改变加热电源电压和电流控制。实验结果表明,在热流密度和质量流量保持不变时,改变过冷度对热源表面温度和换热系数的影响并不明显;在热流密度和过冷度保持不变的条件下,系统存在一个临界质量流量值,在质量流量达到临界值之前,热源表面温度随质量流量的增大而降低,当质量流量高于临界值时,热源表面温度随质量流量的增大而升高;当质量流量和过冷度保持不变时,存在一个热流密度使液滴的蒸发量等于补充量,在此热流密度下热源表面系数能达到最大。  相似文献   

6.
分析R22、R404A与R407F制冷剂的物理性质,并采用涡旋压缩机进行试验测试。结果表明:在高温应用上,R22、R404A和R407F制冷能力数值相近,R407F制冷系数比R22、R404A稍低;而在低温应用上,R407F制冷能力、制冷系数比R22、R404A都低。  相似文献   

7.
针对制冷剂R1233zd(E)和R123,在饱和温度36. 1℃,冷凝水流速2. 12 m/s,2. 59 m/s和2. 90 m/s工况下,分别对水平光管和强化冷凝管GDHT-GDⅢ的管外冷凝换热系数进行测试。结果表明:R1233zd(E)的光管管外冷凝换热系数高于R123的6%~16%,R1233zd(E)的强化冷凝管GDHT-GDⅢ管外冷凝换热系数高于R123的19%~21%;采用强化冷凝管GDHT-GDⅢ时R1233zd(E)的管外冷凝换热系数是采用光管时的10. 8倍。指出R1233zd(E)可作为R123的替代物,强化冷凝管GDHT-GDⅢ能够很好地发挥R1233zd(E)的换热性能。  相似文献   

8.
一种冷凝强化换热管传热性能的试验研究   总被引:1,自引:0,他引:1  
以目前广泛使用的R22为工质,对一种冷凝强化换热管管外冷凝换热性能进行了实验研究.管内以乙二醇为冷却介质.在恒定热流密度、变乙二醇流速与乙二醇流速不变条件下,改变乙二醇进口温度得到一系列实验数据,再通过威尔逊(Wilson)图解法同时得到管内外换热关联式.给出了不同管内流速时管外冷凝换热性能对比图.该冷凝强化换热管管外冷凝换热性能与普通光管相比,传热强化倍率为4.48.由于管内表面有细微的凹凸形状,使管内对流换热系数达到光滑管的1.33倍.  相似文献   

9.
R407C、R410A系统热力性能研究综述   总被引:7,自引:2,他引:7  
陈斌  陈光明 《制冷》2003,22(3):24-30
本文介绍了R22制冷剂最有希望的替代物R407C和R410A的基本物性,以及国外学者对使用这两种工质的制冷系统有关换热、压降特性及对COP影响的研究成果,以帮助国内制冷、空调企业了解R22替代工质研究的新动向、加快制冷工质替代的步伐。  相似文献   

10.
《制冷》2017,(1)
对水平管外纯工质R22、R134a,R125浓度分别为6%,12%,18%的R134a/R125混合工质以及三元混合工质R417A(R134a/R125/R600浓度分别为50%/46.6%/3.4%)池沸腾换热性能进行了试验研究。通过对不同工质在光管和强化管外的沸腾换热性能进行比较与分析表明:强化管外沸腾换热系数明显高于光管,在热流密度为60k W/m2时,纯工质R22在强化管外沸腾换热系数是光管的3.10倍;纯工质R134a在强化管外沸腾换热系数是光管的2.85倍;在分别含6%、12%、18%R125的R134a/R125混合工质中,强化管外的沸腾传热系数是相对于同条件下光管的2.49、2.42、2.28倍;在R417A中,强化管外沸腾换热系数是光管的2.10倍。不同质量浓度的R125对光管沸腾换热系数影响相对较小,而对强化管外沸腾换热系数影响较大。  相似文献   

11.
An investigation of the change in condenser overall heat transfer coefficient when replacing R22 with one of the three mixtures R407C, R404A and R410B was made, both experimentally and theoretically. Measurements have been carried out on a full-scale test plant consisting of a horizontal shell-side condenser. According to the measurements the decrease in overall heat transfer coefficient for the non-azeotropic mixture R407C was very large, up to 70% compared to R22, while for the near-azeotropic mixture R404A the decrease was less than 15%. Simulations of the condenser were done with a comprehensive computer program, calculating the condensation heat transfer with an approximate method including a correction for mass resistance. The calculation model was not able to predict this large degradation for the non-azeotropic mixture, while the predictions agreed rather well with the measurements for the pure fluid and the near-azeotropic mixtures.  相似文献   

12.
In this study, condensation heat transfer coefficients (HTCs) were measured on a horizontal plain tube, low fin tube, and Turbo-C tube at the saturated vapor temperature of 39 °C for R22, R407C, and R410A with the wall subcooling of 3–8 °C. R407C, a non-azeotropic refrigerant mixture, exhibited a quite different condensation phenomenon from those of R22 and R410A and its condensation HTCs were up to 50% lower than those of R22. For R407C, as the wall subcooling increased, condensation HTCs decreased on a plain tube while they increased on both low fin and turbo-C tubes. This was due to the lessening effect of the vapor diffusion film with a rapid increase in condensation rate on enhanced tubes. On the other hand, condensation HTCs of R410A, almost an azeotrope, were similar to those of R22. For all refrigerants tested, condensation HTCs of turbo-C tube were the highest among the tubes tested showing a 3–8 times increase as compared to those of a plain tube.  相似文献   

13.
This paper presents local heat transfer results obtained during the condensation of Isceon 59, R407C and R404A in a smooth horizontal tube. The results have been compared with existing correlations for condensation heat transfer to assess the validity of these models for refrigerant mixtures. Two correlations (Dobson MK, Chato JC. Condensation in smooth horizontal tubes. Journal of Heat Transfer, Transactions of ASME 1998; 120: 193–213, Shah MM. A general correlation for heat transfer during film condensation inside pipes. Int J Heat & Mass Transfer 1979; 22: 547–56) have been considered because they deal with refrigerant blends and their range of applicability suited the experimental test conditions. The Dobson and Chato correlation provided the best prediction for these refrigerant mixtures. The Shah correlation fitted the measurements of the local heat transfer coefficients well and seem to cope well with refrigerant mixtures.  相似文献   

14.
Experiments were conducted to obtain row-by-row heat and mass transfer data during condensation of downward-flowing zeotropic mixture R123/R134a in a staggered bundle of horizontal low-finned tubes. The vapor temperature and the mass fraction of R134a at the tube bundle inlet were about 50°C and 14%, respectively. The refrigerant mass velocity ranged from 9 to 34 kg m−2 s−1, and the condensation temperature difference from 1.9 to 12 K. Four kinds of low-finned tubes with different fin geometry were tested. The highest heat transfer coefficient was obtained with a tube which showed the highest performance for R123. However, the diference among the tubes was much smaller for the mixture than for R123. The heat transfer coefficient and the vapor-phase mass transfer coefficient decreased significantly with decreasing mass velocity. The mass transfer coefficient increased with condensation temperature difference, which was due to the effect of suction associated with condensation. On the basis of the analogy between heat and mass transfer, a dimensionless correlation of the mass transfer coefficient was developed for each tube.  相似文献   

15.
Detailed calculations of condensation outside a column of horizontal smooth tubes have been carried out in order to investigate the influence of mass transfer resistance for a zeotropic refrigerant mixture. Diffusive transport is calculated locally in both phases. Calculation results show that mass transfer resistance in the gas phase reduces heat transfer by 10–20% for a binary mixture with a glide similar to that of R407C.The decrease in heat transfer due to poor mixing in the condensate is from 15 to 65% for the conditions investigated; the lower the duty, the greater the decrease. Results show that if assuming mixing in the condensate by diffusion only, the degrees of mixing and the duty dependency are similar to results in earlier work where calculations were matched to experimental data. Diffusion is likely to be the dominant mixing mechanism in the condensate, and the mixing is poor under certain conditions, which might explain the drop in condenser performance for some heat pump applications.  相似文献   

16.
This paper describes experimental results that show the effects of mass velocity and condensation temperature difference on the local heat transfer characteristics during condensation of R407C in a horizontal microfin tube. The experiments were performed at the saturation temperature of 40 °C, the refrigerant mass velocity of 50, 100, 200 and 300 kg m−2 s−1, and the condensation temperature difference of 1.5, 2.5 and 4.5 K. A superficial heat transfer coefficient for the vapor phase was obtained by subtracting the heat transfer resistance of condensate film estimated by using a previously developed theoretical model of film condensation of pure vapor from the overall heat transfer resistance. On the basis of the analogy between heat and mass transfer, an empirical equation for the superficial vapor phase heat transfer coefficient was developed. The heat transfer coefficient predicted by the combination of the previously developed theoretical model of film condensation of pure vapor and the empirical equation of the superficial vapor phase heat transfer coefficient agreed with the measured values with the r.m.s. error of 9.2%.  相似文献   

17.
搭建了降膜蒸发实验台,研究了水平单管外的降膜蒸发传热特性。测试管为外径19mm、有效实验长度为2500mm的光滑管和强化管。实验采用R404A作为管外降膜蒸发工质,与管内热水进行换热。布液采用喷嘴喷淋的方式,通过21个喷口当量直径为2mm的喷嘴完成。分别在变饱和温度(0、5、10、15℃)、变热流密度(从8到30kW/m2)和变喷淋量(从0.07到0.11kg/(m·s)时进行实验,研究了降膜蒸发换热性能相应的变化情况,得到R404A的管外降膜蒸发换热的一些规律,这对降膜蒸发器的设计及应用具有一定的参考作用。  相似文献   

18.
This study presents a prediction model for the condensation heat transfer characteristics of binary zeotropic refrigerant mixtures inside horizontal smooth tubes. In this model, both the vapor-side and liquid-side mass transfers are considered, and the high flux mass transfer correction factor is used to evaluate mass transfer coefficients. The model was applied to the binary zeotropic refrigerant mixture R134a/R123, which has a large temperature glide. Calculation results showed that the heat transfer degradation of R134a/R123 due to gradients in the mass fraction and temperature is considerable, and depends on the mass fraction of the more volatile component and the vapor mass quality of the refrigerant mixture. By comparison with experimental data, incorporating the present finite mass transfer model for the liquid film side into the calculation algorithm was shown to reasonably well predict the condensation heat transfer coefficients of binary refrigerant mixtures with the mean deviation of about 10.3%. In the present calculations, however, it was also found that the high flux mass transfer correction factor had only a slight effect on the condensation heat transfer.  相似文献   

19.
Influence of the heat flux in mixture boiling: experiments and correlations   总被引:3,自引:0,他引:3  
Heat transfer at nucleate pool boiling of the binary and ternary refrigerant mixtures R404A, R407C and R507 at the outside of a horizontal tube with emery ground surface has been investigated in a wide range of pressures and heat fluxes. Together with experimental data of Bednar and Bier for wide boiling ethane/n-butane mixtures, the results of these comparatively narrow boiling mixtures are used to investigate the influence of heat flux q on the heat transfer coefficient as predicted by various correlations for nucleate boiling of mixtures. At comparatively high saturation pressures with experimental -values markedly smaller than the molar average of the pure components, the ,q-relationships predicted differ significantly from the experimental, particularly for wide boiling mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号