共查询到17条相似文献,搜索用时 62 毫秒
1.
2.
多子阵互耦条件下的一维波达方向估计及互耦自校正 总被引:1,自引:0,他引:1
该文研究多子阵(multiple subarrays)阵元互耦条件下的波达方向(DOA)估计,假设阵列由多个位置已知的均匀线阵(ULA)组成,但线阵阵元间存在互耦效应。利用均匀线阵互耦矩阵的带状、对称Toeplitz性及多子阵互耦矩阵的块状对角特性,提出了一种解耦合波达方向估计及互耦自校正算法。该算法在未知阵元互耦参数的情况下,可准确估计出信源的波达方向。另外,算法在精确估计波达方向的同时,还可准确估计出阵元间的互耦系数,实现多子阵的互耦自校正。算法的波达方向估计只需一维谱峰搜索,避免了通常多参数联合估计的多维非线性搜索及迭代运算,可明显减小算法运算量。文中讨论了算法参数可辨识性的必要条件,并分析计算了多参数联合估计的克拉美-罗界(CRB)。理论分析及蒙特卡罗仿真结果表明,该算法具有计算量小、DOA估计分辨力高、互耦校正效果好等优点。 相似文献
3.
4.
该文研究多子阵(multiple subarrays)阵元互耦条件下的波达方向(DOA)估计,假设阵列由多个位置已知的均匀线阵(ULA)组成,但线阵阵元间存在互耦效应。利用均匀线阵互耦矩阵的带状、对称Toeplitz性及多子阵互耦矩阵的块状对角特性,提出了一种解耦合波达方向估计及互耦自校正算法。该算法在未知阵元互耦参数的情况下,可准确估计出信源的波达方向。另外,算法在精确估计波达方向的同时,还可准确估计出阵元问的互耦系数,实现多子阵的互耦自校正。算法的波达方向估计只需一维谱峰搜索,避免了通常多参数联合估计的多维非线性搜索及迭代运算,可明显减小算法运算量。文中讨论了算法参数可辨识性的必要条件,并分析计算了多参数联合估计的克拉美-罗界(CRB)。理论分析及蒙特卡罗仿真结果表明,该算法具有计算量小、DOA估计分辨力高、互耦校正效果好等优点。 相似文献
5.
当阵列天线存在互耦效应时,传统多重信号分类(MUltiple SIgnal Classification, MUSIC)算法的测向性能急剧下降。为了有效估计阵列互耦矩阵(MCM)与入射信号的波达方向(Direction Of Arrival, DOA),该文提出一种阵列互耦矩阵与波达方向的级联估计方法。利用互耦矩阵的结构特点,变换阵列流形,实现对互耦矩阵与DOA的解耦合。求解线性约束下的二次优化问题,利用谱峰搜索,得到阵列互耦矩阵和入射信号DOA,完成互耦误差自校正。通过计算机仿真验证了该文方法估计性能的有效性和优越性。 相似文献
6.
针对L型阵,提出了一种互耦自校正算法(SAL: self-calibration algorithm for L-shaped array)。该算法利用L型阵列特殊的互耦特性,实现了对信源信息(DOA)和阵列互耦系数的解耦合,从而无需任何校正源就可以实现两类参数的估计。与基于循环迭代最小化技术的传统自校正算法相比,该算法先通过搜索谱峰估计信源信息(DOA),再估计互耦系数,从而避免了多维搜索带来的庞大运算量和迭代中的全局收敛性问题。仿真结果表明本文提出的自校正算法具有精度高、计算量小的特点。 相似文献
7.
8.
9.
10.
本文提出一种适用于均匀线阵的互耦校准方法。该方法中需用一个位于近场的已知源即能实现有效校准,并可推广应用于均匀圆阵。同时,文中还讨论了校准源的位置误差对校准的影响,并分析校准源应选取的最佳方位。最后,对新方法进行仿真验证。 相似文献
11.
互耦条件下均匀线阵DOA盲估计 总被引:5,自引:1,他引:5
阵元间存在互耦时,经典的波达角(DOA)估计算法性能急剧下降甚至失效。针对互耦条件下均匀线阵DOA估计问题,该文提出一种基于盲源分离的DOA盲估计算法。首先,利用源信号的统计特性,由盲源分离方法估计广义阵列流形矩阵;然后,利用均匀线阵互耦矩阵带状、Toeplitz矩阵的特点,将DOA估计问题转化为多个可分离非线性最小二乘问题,由多个1维频域搜索得到DOA的估计。该算法无需高维搜索或多维迭代,对互耦自由度要求更低,互耦自由度未知时仍旧适用,稳健度高。数值仿真验证了该文算法的有效性。 相似文献
12.
针对残缺电磁矢量传感器的极化敏感阵列多参数联合估计问题,该文提出一种基于正交偶极子的均匀线阵的2维波达方向(Direction-Of-Arrival, DOA)估计算法。首先,对极化敏感阵列的接收数据矢量的协方差矩阵进行特征分解,然后将信号子空间划分成4个子阵,根据旋转不变子空间(ESPRIT)算法分别求出其中1个子阵与其它3个子阵的相位差,再对不同子阵间的相位差进行配对,最后根据相位差求出信号的DOA估计和极化参数。由正交偶极子组成的均匀线阵使用极化MUSIC算法和传统ESPRIT算法无法进行2维DOA估计,该文提出的算法解决了这个问题,并且相较于极化MUISC算法降低了算法的复杂度。仿真结果验证了该文算法的有效性。 相似文献
13.
理想条件下,均匀线阵的互耦矩阵可用一带状、对称Toeplitz矩阵进行建模。然而实测数据表明,均匀线阵的互耦矩阵具有对称性,但不具有Toeplitz性,此时仍按理想情况建模,会导致DOA估计不准甚至完全失效。基于RBF神经网络,提出了互耦矩阵非Toeplitz条件下的DOA估计方法。算法利用了信号协方差矩阵的对称性和对角线元素不含信号DOA信息的特点,取协方差矩阵的上三角的元素作为网络输入,不仅减少了网络的输入数,同时还提高了与阵列法线夹角60°外的DOA估计精度。实验仿真结果验证了算法的有效性。 相似文献
14.
针对互耦条件下均匀线阵(Uniform Linear Array, ULA),该文基于交替迭代提出一种适用于混合信号模型的波达方向(Direction of Arrival, DoA)与互耦误差估计算法。算法首先利用ULA互耦矩阵的带状Toeplitz结构,提出一种基于门限的非相干信源DoA估计方法,进而实现互耦误差初步估计;在此基础上,以交互迭代方式实现混合信号DoA估计及互耦误差更新。算法最多只需二次交互迭代,就可实现收敛。计算机仿真结果表明:该算法在较少接收快拍数及低信噪比情况下,均具有良好的DoA及互耦误差估计性能。 相似文献
15.
16.