共查询到17条相似文献,搜索用时 281 毫秒
1.
2.
该文研究多子阵(multiple subarrays)阵元互耦条件下的波达方向(DOA)估计,假设阵列由多个位置已知的均匀线阵(ULA)组成,但线阵阵元间存在互耦效应。利用均匀线阵互耦矩阵的带状、对称Toeplitz性及多子阵互耦矩阵的块状对角特性,提出了一种解耦合波达方向估计及互耦自校正算法。该算法在未知阵元互耦参数的情况下,可准确估计出信源的波达方向。另外,算法在精确估计波达方向的同时,还可准确估计出阵元间的互耦系数,实现多子阵的互耦自校正。算法的波达方向估计只需一维谱峰搜索,避免了通常多参数联合估计的多维非线性搜索及迭代运算,可明显减小算法运算量。文中讨论了算法参数可辨识性的必要条件,并分析计算了多参数联合估计的克拉美-罗界(CRB)。理论分析及蒙特卡罗仿真结果表明,该算法具有计算量小、DOA估计分辨力高、互耦校正效果好等优点。 相似文献
3.
该文研究多子阵(multiple subarrays)阵元互耦条件下的波达方向(DOA)估计,假设阵列由多个位置已知的均匀线阵(ULA)组成,但线阵阵元间存在互耦效应。利用均匀线阵互耦矩阵的带状、对称Toeplitz性及多子阵互耦矩阵的块状对角特性,提出了一种解耦合波达方向估计及互耦自校正算法。该算法在未知阵元互耦参数的情况下,可准确估计出信源的波达方向。另外,算法在精确估计波达方向的同时,还可准确估计出阵元问的互耦系数,实现多子阵的互耦自校正。算法的波达方向估计只需一维谱峰搜索,避免了通常多参数联合估计的多维非线性搜索及迭代运算,可明显减小算法运算量。文中讨论了算法参数可辨识性的必要条件,并分析计算了多参数联合估计的克拉美-罗界(CRB)。理论分析及蒙特卡罗仿真结果表明,该算法具有计算量小、DOA估计分辨力高、互耦校正效果好等优点。 相似文献
4.
5.
当阵列天线存在互耦效应时,传统多重信号分类(MUltiple SIgnal Classification, MUSIC)算法的测向性能急剧下降。为了有效估计阵列互耦矩阵(MCM)与入射信号的波达方向(Direction Of Arrival, DOA),该文提出一种阵列互耦矩阵与波达方向的级联估计方法。利用互耦矩阵的结构特点,变换阵列流形,实现对互耦矩阵与DOA的解耦合。求解线性约束下的二次优化问题,利用谱峰搜索,得到阵列互耦矩阵和入射信号DOA,完成互耦误差自校正。通过计算机仿真验证了该文方法估计性能的有效性和优越性。 相似文献
6.
针对L型阵,提出了一种互耦自校正算法(SAL: self-calibration algorithm for L-shaped array)。该算法利用L型阵列特殊的互耦特性,实现了对信源信息(DOA)和阵列互耦系数的解耦合,从而无需任何校正源就可以实现两类参数的估计。与基于循环迭代最小化技术的传统自校正算法相比,该算法先通过搜索谱峰估计信源信息(DOA),再估计互耦系数,从而避免了多维搜索带来的庞大运算量和迭代中的全局收敛性问题。仿真结果表明本文提出的自校正算法具有精度高、计算量小的特点。 相似文献
7.
8.
9.
10.
本文提出一种适用于均匀线阵的互耦校准方法。该方法中需用一个位于近场的已知源即能实现有效校准,并可推广应用于均匀圆阵。同时,文中还讨论了校准源的位置误差对校准的影响,并分析校准源应选取的最佳方位。最后,对新方法进行仿真验证。 相似文献
11.
阵元间存在互耦时,经典的波达角(DOA)估计算法性能急剧下降甚至失效。针对互耦条件下均匀线阵DOA估计问题,该文提出一种基于盲源分离的DOA盲估计算法。首先,利用源信号的统计特性,由盲源分离方法估计广义阵列流形矩阵;然后,利用均匀线阵互耦矩阵带状、Toeplitz矩阵的特点,将DOA估计问题转化为多个可分离非线性最小二乘问题,由多个1维频域搜索得到DOA的估计。该算法无需高维搜索或多维迭代,对互耦自由度要求更低,互耦自由度未知时仍旧适用,稳健度高。数值仿真验证了该文算法的有效性。 相似文献
12.
An algorithm for joint direction-of-departure (DOD) and direction-of-arrival (DOA) estimation in the presence of unknown mutual coupling for bistatic MIMO radar is presented. Based on the special structure of the coupling matrix of uniform linear array (ULA), the angles can be estimated directly by two one-dimensional searches without the knowledge of the mutual coupling matrices. Then the mutual coupling coefficients of the transmitter and the receiver can be solved in closed-form by utilizing the obtained DODs and DOAs, respectively. Numerical examples are given for demonstrating the effectiveness of the proposed method. 相似文献
13.
针对互耦条件下均匀线阵(Uniform Linear Array, ULA),该文基于交替迭代提出一种适用于混合信号模型的波达方向(Direction of Arrival, DoA)与互耦误差估计算法。算法首先利用ULA互耦矩阵的带状Toeplitz结构,提出一种基于门限的非相干信源DoA估计方法,进而实现互耦误差初步估计;在此基础上,以交互迭代方式实现混合信号DoA估计及互耦误差更新。算法最多只需二次交互迭代,就可实现收敛。计算机仿真结果表明:该算法在较少接收快拍数及低信噪比情况下,均具有良好的DoA及互耦误差估计性能。 相似文献
14.
针对残缺电磁矢量传感器的极化敏感阵列多参数联合估计问题,该文提出一种基于正交偶极子的均匀线阵的2维波达方向(Direction-Of-Arrival, DOA)估计算法。首先,对极化敏感阵列的接收数据矢量的协方差矩阵进行特征分解,然后将信号子空间划分成4个子阵,根据旋转不变子空间(ESPRIT)算法分别求出其中1个子阵与其它3个子阵的相位差,再对不同子阵间的相位差进行配对,最后根据相位差求出信号的DOA估计和极化参数。由正交偶极子组成的均匀线阵使用极化MUSIC算法和传统ESPRIT算法无法进行2维DOA估计,该文提出的算法解决了这个问题,并且相较于极化MUISC算法降低了算法的复杂度。仿真结果验证了该文算法的有效性。 相似文献
15.
16.