首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Density functional theory calculations elucidated the precise reaction mechanism for the conversion of diphenylacetylenes into benzonitriles involving the cleavage of the triple C≡C bond, with N-iodosuccinimide (NIS) as an oxidant and trimethylsilyl azide (TMSN3) as a nitrogen donor. The reaction requires six steps with the activation barrier ΔG = 33.5 kcal mol−1 and a highly exergonic reaction free-energy ΔGR = −191.9 kcal mol−1 in MeCN. Reaction profiles agree with several experimental observations, offering evidence for the formation of molecular I2, interpreting the necessity to increase the temperature to finalize the reaction, and revealing thermodynamic aspects allowing higher yields for alkynes with para-electron-donating groups. In addition, the proposed mechanism indicates usefulness of this concept for both internal and terminal alkynes, eliminates the option to replace NIS by its Cl- or Br-analogues, and strongly promotes NaN3 as an alternative to TMSN3. Lastly, our results advise increasing the solvent polarity as another route to advance this metal-free strategy towards more efficient processes.  相似文献   

2.
The structure of the radical S‐adenosyl‐L ‐methionine (SAM) [FeFe]‐hydrogenase maturase HydG involved in CN?/CO synthesis is characterized by two internal tunnels connecting its tyrosine‐binding pocket with the external medium and the C‐terminal Fe4S4 cluster‐containing region. A comparison with a tryptophan‐bound NosL structure suggests that substrate binding causes the closing of the first tunnel and, along with mutagenesis studies, that tyrosine binds to HydG with its amino group well positioned for H‐abstraction by SAM. In this orientation the dehydroglycine (DHG) fragment caused by tyrosine Cα?Cβ bond scission can readily migrate through the second tunnel towards the C‐terminal domain where both CN? and CO are synthesized. Our HydG structure appears to be in a relaxed state with its C‐terminal cluster CysX2CysX22Cys motif exposed to solvent. A rotation of this domain coupled to Fe4S4 cluster assembly would bury its putatively reactive unique Fe ion thereby allowing it to interact with DHG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号