首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Functionalized polypyrrole film were prepared by incorporation of (Fe(CN)6)4− as doping anion, during the electropolymerization of pyrrole onto a carbon paste electrode (CPE) in aqueous solution by using potentiostatic method. The electrochemical behavior of the (Fe(CN)6)3−/(Fe(CN)6)4− redox couple in polypyrrole was studied by cyclic voltammetry and double step potential chronoamperometry methods. In this study, an obvious surface redox reaction was observed and dependence of this reaction on the solution pH was illustrated. The electrocatalytic ability of polypyrrole/ferrocyanide films modified carbon paste electrode (Ppy/FCNMCPEs) was demonstrated by oxidation of ascorbic acid. It has been found that under optimum condition (pH 7.00), the oxidation of ascorbic acid at the surface of such electrode occurs at a potential about 540 mV less positive than unmodified carbon paste electrode. The kinetic parameters such as electron transfer coefficient, α and catalytic reaction rate constant, kh′, were also determined by using various electrochemical approaches.The catalytic oxidation peak current showed a linear dependent on the ascorbic acid concentration and a linear calibration curve was obtained in the range of 4.5×10−4 to 9.62×10−3 M of ascorbic acid with a correlation coefficient of 0.9999. The detection limit (2σ) was determined as 5.82×10−5 M.  相似文献   

2.
A sensitive and novel DNA electrochemical biosensor for the detection of the transgenic plants gene fragment by electrochemical impedance spectroscopy (EIS) was presented. The well-dispersed carboxylic group-functionalized single-walled carbon nanotubes (SWNTs) were dripped onto the carbon paste electrode (CPE) surface firstly, and poly-l-lysine films (pLys) were subsequently electropolymerized by cyclic voltammetry (CV) to prepare pLys/SWNTs/CPE. The morphology of pLys/SWNTs films was examined using a field emission scanning electron microscope (SEM). The pLys/SWNTs films modified electrode exhibited very good conductivity. DNA probes were easily immobilized on the poly-l-lysine films via electrostatic adsorption. The hybridization events were monitored with electrochemical impedance spectroscopy using [Fe(CN)6]3−/4− as indicator. The PAT gene fragment from phosphinothricin acetyltransferase gene was detected by this DNA electrochemical sensor. The dynamic detection range of this sensor to the PAT gene fragment was from 1.0 × 10−12 to 1.0 × 10−7 mol/L. A detection limit of 3.1 × 10−13 mol/L could be estimated. The PCR amplification of NOS gene from the sample of a kind of transgenic modified bean was also detected satisfactorily by EIS.  相似文献   

3.
The potential application of Al-incorporated mesoporous SiO2 (denoted as Al-MCM-41) in electrochemistry as a novel electrode material was investigated. The peak currents of K3[Fe(CN)6] remarkably increase and the peak potential separation obviously decreases at the mesoporous Al-MCM-41 modified carbon paste electrode (CPE). These phenomena suggest that the mesoporous Al-MCM-41 modified CPE possesses larger electrode area and electron transfer rate constant. Furthermore, the electrochemical behavior of epinephrine (EP) was investigated in different supporting electrolytes such as 0.01 mol L−1 HClO4 and pH 7.0 phosphate buffer. It is found that the mesoporous Al-MCM-41 modified CPE exhibits catalytic ability to the oxidation of EP due to remarkable peak current enhancement and negative shift of peak potential. The electrochemical oxidation mechanism was also discussed. Finally, a novel electrochemical method was proposed for the determination of EP, which used to determine EP in urine samples.  相似文献   

4.
Poly(o-aminophenol) (POAP) was formed by successive cyclic voltammetry in monomer solution in the presence of sodium dodecyl sulfate (SDS) on the surface of a carbon paste electrode. The electrochemical behavior of the SDS-POAP carbon paste electrode has been investigated by cyclic voltammetry in 0.5 M HClO4 and 5 mM K4[Fe(CN)6]/0.1 M KCl solutions as the supporting electrolyte and model system, respectively. Ni(II) ions were incorporated into the electrode by immersion of the polymeric modified electrode having amine groups in 0.1 M Ni(II) ion solution. Cyclic voltammetric and chronoamperometric experiments were used for the electrochemical study of this modified electrode. A good redox behavior of the Ni(III)/Ni(II) couple at the surface of electrode can be observed. The electrocatalytic oxidations of methanol and ethylene glycol (EG) at the surface of the Ni/SDS-POAP electrode were studied in a 0.1 M NaOH solution. Compared to bare carbon paste and POAP-modified carbon paste electrodes, the SDS-POAP electrode significantly enhanced the catalytic efficiency of Ni ions for methanol oxidation. Finally, using a chronoamperometric method, the catalytic rate constants (k) for methanol and ethylene glycol were found to be 2.04 × 105 and 1.05 × 107 cm3 mol−1 s−1, respectively.  相似文献   

5.
An electrochemical biosensor was constructed based on the immobilization of myoglobin (Mb) in a composite film of Nafion and hydrophobic ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) for a modified carbon paste electrode (CPE). Direct electrochemistry of Mb in the Nafion-BMIMPF6/CPE was achieved, confirmed by the appearance of a pair of well-defined redox peaks. The results indicate that Nafion-BMIMPF6 composite film provided a suitable microenvironment to realize direct electron transfer between Mb and the electrode. The cathodic and anodic peak potentials were located at −0.351 V and −0.263 V (vs. SCE), with the apparent formal potential (Ep) of −0.307 V, which was characteristic of Mb Fe(III)/Fe(II) redox couples. The electrochemical behavior of Mb in the composite film was a surface-controlled quasi-reversible electrode process with one electron transfer and one proton transportation when the scan rate was smaller than 200 mV/s. Mb-modified electrode showed excellent electrocatalytic activity towards the reduction of trichloroacetic acid (TCA) in a linear concentration range from 2.0 × 10−4 mol/L to 1.1 × 10−2 mol/L and with a detection limit of 1.6 × 10−5 mol/L (3σ). The proposed method would be valuable for the construction of a third-generation biosensor with cheap reagents and a simple procedure.  相似文献   

6.
Functionalized polypyrrole film were prepared by incorporation of [Fe(CN)6]4− as a doping anion, during the electropolymerization of pyrrole onto a carbon paste electrode in an aqueous solution by potentiostatic method. The electrochemical behavior of dopamine (DA) and ascorbic acid (AA) in one solution was studied at the surface of bare and modified carbon paste electrodes using cyclic voltammetry (CV), linear sweep voltammetry (LSV) and differntial pulse voltammetry (DPV) methods. The well separated anodic peaks for oxidation of DA and AA were observed at the surface of the modified carbon paste electrode under optimum condition (pH 6.00), which can be used for determination of these species simultaneously in mixture by LSV and DPV methods. The linear analytical curves were obtained in the ranges of 0.10-1.00 mM and 0.10-0.95 mM for ascorbic acid and 0.10-1.20 mM and 0.20-0.95 mM for dopamine concentrations using LSV and DPV methods, respectively. The detection limits (2σ) were determined as 3.38 × 10−5 M and 1.34 × 10−5 M of ascorbic acid and 3.86 × 10−5 M and 1.51 × 10−5 M of dopamine by CV and DPV methods.  相似文献   

7.
In this work, the ion exchange characteristics of poly(butyl viologen) (PBV) thin films on a platinum electrode has been investigated by cyclic voltammetric (CV) scans. Since ferrocyanide anions (Fe(CN)64−) were added during the polymerization of the PBV thin-film for its stability, Fe(CN)64− could form charge transfer complex with monomer and co-deposited with polymer. Scanning electrochemical microscopy (SECM) was used to probe the released Fe(CN)64− ions from PBV film with Os(bpy)3Cl2 as a mediator for the approaching process in 0.5 M KCl medium. Mass changes during the redox process of the film were also monitored in-situ by electrochemical quartz crystal microbalance (EQCM). The ion exchange and transport behavior was observed during CV cycling of the film of the SECM and EQCM. The insertion and extraction of anions were found to be potential-dependence. Moreover, the decrease in tip current of released Fe(CN)64− with increasing cycle number accounted for the ion exchange between Fe(CN)64− and Cl in the KCl electrolyte. However, the Fe(CN)64−/Fe(CN)63− redox couple was found to be highly stable between 0.0 and 0.5 V (vs. Ag/AgCl/saturated KCl) in the phosphate buffer solution. Therefore, the electrochemical property of Fe(CN)64−/Fe(CN)63− redox couple was studied at different scan rates using CV technique. The peak currents were directly proportional to the scan rate as predicted for a surface confined diffusionless system. The surface coverage (Γ) and the concentration of Fe(CN)64− were determined to be 1.88 × 10−8 mol/cm2 and 0.641 mol/dm3, respectively. By neglecting cations incorporation during redox reaction of the PBV film and also based on the results obtained from energy-dispersive X-ray spectroscopy for the films of as-deposited, reduced and oxidized states, an ion exchange mechanism was proposed.  相似文献   

8.
An electrochemical impedance immunosensor for the detection of Escherichia coli was developed by immobilizing anti-E. coli antibodies at an Au electrode. The immobilization of antibodies at the Au electrode was carried out through a stable acyl amino ester intermediate generated by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydrosuccinimide (NHS), which could condense antibodies reproducibly and densely on the self-assembled monolayer (SAM). The surface characteristics of the immunosensor before and after the binding reaction of antibodies with E. coli were characterized by atomic force microscopy (AFM). The immobilization of antibodies and the binding of E. coli cells to the electrode could increase the electro-transfer resistance, which was directly detected by electrochemical impedance spectroscopy (EIS) in the presence of Fe(CN)63−/Fe(CN)64− as a redox probe. A linear relationship between the electron-transfer resistance and the logarithmic value of E. coli concentration was found in the range of E. coli cells from 3.0 × 103 to 3.0 × 107 cfu mL−1 with the detection limit of 1.0 × 103 cfu mL−1. With preconcentration and pre-enrichment steps, it was possible to detect E. coli concentration as low as 50 cfu/mL in river water samples.  相似文献   

9.
Electron transfer (ET) kinetics through n-dodecanethiol (C12SH) self-assembled monolayer on gold electrode was studied using cyclic voltammetry (CV), scanning electrochemical microscopy (SECM) and electrochemical impedance spectroscopy (EIS). An SECM model for compensating pinhole contribution, was used to measure the ET kinetics of solution-phase probes of ferrocyanide/ferricyanide (Fe(CN)64−/3−) and ferrocenemethanol/ferrociniummethanol (FMC0/+) through the C12SH monolayer yielding standard tunneling rate constant () of (4 ± 1) × 10−11 and (3 ± 1) × 10−10 cm s−1 for Fe(CN)64−/3− and FMC0/+ respectively. Decay tunneling constants (β) of 0.97 and 0.96 Å−1 for saturated alkane thiol chains were obtained using Fe(CN)64− and FMC respectively. Also, it was found that methylene blue (MB) molecules are effectively immobilized on the C12SH monolayer and can mediate the ET between the solution-phase probes and underlying gold substrate. SECM-mediated model was used to simultaneously measure the bimolecular ET between the solution-phase probes and the monolayer-immobilized MB molecules, as well as tunneling ET between the monolayer-immobilized MB molecules and the underlying gold electrode, allowing the measurement of kBI = (5 ± 1) × 106 and (4 ± 2) × 107 cm3 mol−1 s−1 for the bimolecular ET and and (7 ± 3) × 10−2 s−1 for the standard tunneling rate constant of ET using Fe(CN)64−/3− and FMC0/+ probes respectively.  相似文献   

10.
Hexacyanoferrate ion, [Fe(CN)6]4−, was immobilized by an ion-exchange reaction on the propylpyridiniumsilsesquioxane chloride polymer thin-film-coated SiO2/Al2O3 surface. The amount of [Fe(CN)6]4− immobilized was 0.22 mmol g−1 with a surface coverage of 9.6×10−6 mmol cm−2. A carbon paste electrode made with this material was prepared and its electrochemical properties studied. The electrode presented two well-defined redox peaks with midpoint potentials, Em, of 0.152 V vs SCE. This potential was not significantly affected by pH changes between 2 and 9.5. The electrode showed much reproducible responses and was successfully used to study the electrochemical oxidation of cysteine.  相似文献   

11.
A novel ITO electrode surface modified with spherical and rod-shaped gold nanoparticles was prepared by a surfactant-assisted seeding growth approach, which provided a biocompatible matrix for the immobilization of hemoglobin (Hb). By electrochemical impedance measurements, gold nanoparticles modification and Hb immobilization on the electrode surfaces were characterized using [Fe(CN)6]3−/[Fe(CN)6]4− redox probe. Owing to the promoted electron transfer of Hb by gold nanoparticles, the Hb immobilized gold nanoparticles-modified ITO (Hb/Au/ITO) electrode exhibited an effective catalytic response to the reduction of H2O2 with good reproducibility and stability. The linear relationship existed between the catalytic current and the H2O2 concentration in the range of 1 × 10−5 to 7 × 10−3 M. The detection limit (S/N = 3) was 4.5 × 10−6 M.  相似文献   

12.
A glassy carbon (GC) electrode surface was modified with a cadmium pentacyanonitrosylferrate (CdPCNF) film as a novel electrode material. The modification procedure of the GC surface includes two consecutive procedures: (i) the electrodeposition of metallic cadmium on the GC electrode surface from a CdCl2 solution and (ii) the chemical transformation of the deposited cadmium to the CdPCNF films in 0.05 M Na2[Fe(CN)5NO] + 0.5 M KNO3 solution. The modified GC electrode showed a well-defined redox couple due to [CdIIFeIII/II(CN)5NO]0/−1 system. The effects of supporting electrolytes and solution pH were studied on the electrochemical behavior of the modified electrode. The diffusion coefficients of alkali-metal cations in the film (D), the transfer coefficient (α) and the charge transfer rate constant at the modifying film | electrode interface (ks), were calculated in the presence of various alkali-metal cations. The stability of the modified electrode was investigated under various experimental conditions.  相似文献   

13.
Multinegatively charged metal complex, hexacyanoferrate ([Fe(CN)6]4−), was electrostatically trapped in the cationic polymer film of N,N-dimethylaniline (PDMA) which was electrochemically deposited on the boron-doped diamond (BDD) electrode by controlled-potential electro-oxidation of the monomer. This ferrocyanide-trapped PDMA film was used to catalyze the oxidation of ascorbic acid (AA). Increase in the oxidation current response with a negative shift of the anodic peak potential was observed at the cationic PDMA film-coated BDD (PDMA|BDD) electrode, compared with that at the bare BDD electrode. A more drastic enhancement in the oxidation peak current as well as more negative shift of oxidation potential was found at the ferrocyanide-trapped PDMA film-coated BDD ([Fe(CN)6]3−/4−|PDMA|BDD) electrode. This [Fe(CN)6]3−/4−|PDMA|BDD electrode can be used as an amperometric sensor of AA. Ferrocyanide, electrostatically trapped in the polymer film shows more electrocatalytic activity than that coordinatively attached to the polymer film or dissolved in the solution phase. The electrocatalytic current depends on the surface coverage of ferricyanide, ΓFe, within the polymer film. Diffusion coefficient (D) of AA in the solution was estimated by rotating disk electrode voltammetry: D = (5.8 ± 0.3) × 10−6 cm2 s−1. The second-order rate constant for the catalytic oxidation of AA by ferricyanide was also estimated to be 9.0 × 104 M−1 s−1. In the hydrodynamic amperometry using the [Fe(CN)6]3−/4−|PDMA|BDD electrode, a successive addition of 1 μM AA caused the successive increase in current response with equal amplitude and the sensitivity was calculated as 0.233 μA cm−2 μM−1.  相似文献   

14.
An electrochemical DNA biosensor (EDB) was prepared using an oligonucleotide of 21 bases with sequence NH2-5′-GAGGAGTTGGGGGAGCACATT-3′ (probe DNA) immobilized on a novel multinuclear nickel(II) salicylaldimine metallodendrimer on glassy carbon electrode (GCE). The metallodendrimer was synthesized from amino functionalized polypropylene imine dendrimer, DAB-(NH2)8. The EDB was prepared by depositing probe DNA on a dendrimer-modified GCE surface and left to immobilize for 1 h. Voltammetric and electrochemical impedance spectroscopic (EIS) studies were carried out to characterize the novel metallodendrimer, the EDB and its hybridization response in PBS using [Fe(CN)6]3−/4− as a redox probe at pH 7.2. The metallodendrimer was electroactive in PBS with two reversible redox couples at E°′ = +200 mV and E°′ = +434 mV; catalytic by reducing the Epa of [Fe(CN)6]3−/4− by 22 mV; conducting and has diffusion coefficient of 8.597 × 10−8 cm2 s−1. From the EIS circuit fitting results, the EDB responded to 5 nM target DNA by exhibiting a decrease in charge transfer resistance (Rct) in PBS and increase in Rct in [Fe(CN)6]3−/4− redox probe; while in voltammetry, increase in peak anodic current was observed in PBS after hybridization, thus giving the EDB a dual probe advantage.  相似文献   

15.
Modifying electrode surfaces on the molecule scale allow developing new electrochemical biosensors. A new strategy for the immobilization of calf thymus DNA on the surface of gold nanoparticles which are co-immobilized at a gold electrode through 4,4-bis(methanethiol) biphenyl (MTP) molecule by assembly process is demonstrated. The DNA modified electrode was incubated in Co(phen)33+ solution of an aqueous buffer or an acetonitrile (AN) solution, then it was rinsed and placed in a Co(phen)33+ free buffer solution or AN solution, followed by cyclic voltammetric experiments. Clear redox peaks of Co(phen)33+ were observed both in an aqueous and AN solutions. The concentration of supporting electrolyte on electrochemical behavior was discussed. It was found that the surface coverage value of DNA molecules on modified gold nanoparticle and the redox current of adsorbed Co(phen)33+ were decrease with increasing the size of gold nanoparticles (6, 25, 42, 73, and 93 nm). In aqueous solution, the electron transfer rate constant of Co(phen)33+/2+ redox couple became slow with increasing the diameter of gold nanoparticle, and the speed almost had nothing to do with the diameter in nonaqueous solution. The surface concentration of Co(phen)33+ adsorption on DNA modified electrode decreased and rate constant of adsorption kinetics increased with increasing the interactive temperature. In AN solution, the electrostatic interaction between DNA and Co(phen)33+/2+ was greatly reduced, however, compare with in aqueous solution the interaction between DNA and reduced form of Co(phen)32+ was more strongly than oxidized form Co(phen)33+. The surface concentration of Co(phen)33+ adsorption on DNA modified electrode reach maximum value when the interactive temperature about 20 °C, and rate constant of adsorption kinetics nearly independent of the interactive temperature. The results show that the DNA can adsorb on the modified electrode firmly and the Co(phen)33+/2+ adsorbed on DNA give good electrochemical response both in aqueous and nonaqueous solutions. It was confirmed that the DNA modified electrode can be applied in a nonaqueous system and the modified electrode can be used to investigate the interaction between DNA and electroactive species both in aqueous and nonaqueous systems.  相似文献   

16.
The electrochemical modification of the glassy carbon (GC) electrode surface with biphenyl, 1-naphthyl, 2-naphthyl, 4-bromophenyl, 4-decylphenyl and 4-nitrophenyl groups was performed by the diazonium reduction method. The blocking behaviour of aryl films grafted by three different procedures was compared. Oxygen reduction was studied on these modified GC electrodes using the rotating disk electrode (RDE) method. The highest blocking efficiency for O2 reduction was observed for 4-bromophenyl groups. The barrier properties of aryl-modified GC surfaces were also characterised using Fe(CN)63− and dopamine redox probes. Electrochemical measurements were carried out in 0.1 M K2SO4 containing 1 mM K3Fe(CN)6 and in 0.1 M H2SO4 containing 1 mM dopamine using cyclic voltammetry (CV). The blocking action varied significantly depending on the surface modifier used and the solution based redox species studied.  相似文献   

17.
L. Agüí 《Electrochimica acta》2006,51(12):2565-2571
The construction and characterization of a new carbon-felt electrode design of small dimensions is reported. The electrode was checked by testing the electrochemical behaviour of the Fe(CN)63−/4− model system, as well as of several phenolic compounds with xenoestrogenic properties. The use of a carbon-felt cylinder electrode whose heigh was insulated with a poly(ethylene) cover and with two exposed bases of 2.0 mm diameter, resulted in an enhancement of the Fe(CN)63−/4− voltammetric peak current with respect to a conventional glassy carbon electrode with a similar outer surface, which suggests a high contribution of the redox probe solution trapped in the three-dimensional structure of the electrode. The contribution of the electrolysis of the redox probe trapped in the electrode matrix to the voltammetric response, as well as that of the mass transfer from bulk solution, were investigated. The voltammetric behaviour of phenolic compounds with xenoestrogenic properties showed adsorption onto the carbon-felt electrode. Penetration of these compounds into the electrode at open circuit was demonstrated. Two possible applications of the new electrode design are outlined: flow analysis with electrochemical detection of phenolic endocrine disruptors and the possibility of using it for removal of these compounds.  相似文献   

18.
11-mercaptoundecanoic acid (MUA) monolayer and MUA-copper ion-MUA bilayer assembled using thiolate-coppcr ion-carboxylate bridges on MUA monolayer electrode were prepared, and tried to control electron transfer rate of redox ions. The soaking solution to assemble MUA on gold electrode changed from ethanolic MUA solution to 1-butanolic one, then the differential interfacial capacitance decreased from 2.5±0.1 μF cm−2 to 1.6±0.2 μF cm−2, and electron rate constant, k0 of [Co(phen)3]3+ decreased from 20×10−6 cm s−1 to 8.3×10−6 cm s−1. These results show that highly ordered MUA monolayer can be obtained only changing soaking solvent to assemble MUA, Obtained highly ordered MUA monolayer electrode was block off completely redox anion by electrostatic repulsion and MUA film thickness. Moreover using MUA-copper ion-MUA bilayer electrode, k0 of [Co(phen)3]3+ decreased under 1/400 against using MUA monolayer electrode, that value become to under 0.02×10−6 cm s−1. This study shows that the combination of electrode surface charge and length of insulating spacers is able to control electron transfer rate of various electroactive ions.  相似文献   

19.
Stable Nafion-Au colloids were immobilized on a glassy carbon electrode (GCE) for detection of β-agonist clenbuterol by electroanalysis. The Au colloids were prepared by a one-step electrodeposition onto GCE, with obvious electrocatalytic activity present. The negatively charged Nafion film was an efficient barrier to negatively charged interfering compounds, resulting in accumulation of positively charged clenbuterol at the Nafion film. The electrochemical characters of the electrode during various modified steps in a redox probe system of K4[Fe(CN)6]/K3[Fe(CN)6] were confirmed by cyclic voltammetry (CV) and AC-impedance. In Britton-Robinson (B-R) buffer solution (pH = 2.0) and the potential range of −0.2 to 1.2 V, the Nafion-Au colloid modified electrode, compared to a bare GCE, exhibits obvious electrocatalytic activity towards the redox of clenbuterol by greatly enhancing the peak current with a linear calibration curve from 8.0 × 10−7 to 1.0 × 10−5 mol/L and a detection limit of (1.0 × 10−7 mol/L) (R = 0.996). The modified electrode shows high sensitivity, selectivity and reproducibility. The recovery for detecting clenbuterol (∼10−6 mol/L) in human serum is up to 98.19%.  相似文献   

20.
In this work, we studied interfacial proton transfer of the self-assembled monolayer (SAM) of 1-(12-mercaptododecyl)imidazole on a gold electrode by faradaic impedance titration method with Fe(CN)63− as an anionic redox probe molecule. The surface pK1/2 was found to be 7.3, which was nearly the same as that of 1-alkylimidazole in solution. We also investigated the electrochemical properties of the SAM-modified electrode by cyclic voltammetry. Cyclic voltammetry was performed (1) in the solution containing Fe(CN)63− with repeated alternation of pH values to investigate the electrostatic interaction of the protonated or deprotonated imidazole with Fe(CN)63− and (2) in the acidic or basic electrolyte containing Ru(NH3)63+ as a cationic redox probe to verify the effect of the polarity of a redox probe. We observed the reversible adsorption/desorption of Fe(CN)63− and concluded that the adsorbed Fe(CN)63− catalyzed the electron transfer of both Fe(CN)63− itself and cationic Ru(NH3)63+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号