首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxidation of two ternary Fe-Cu-Al alloys containing 10 at.% Al (Fe-65Cu-10Al and Fe-30Cu-10Al) has been studied at 800-900 °C under 1 atm O2. Under all conditions both alloys show an initial faster stage during which Fe-65Cu-10Al corrodes more rapidly at 800 °C than at 900 °C, while Fe-30Cu-10Al follows nearly identical kinetics at both temperatures. As oxidation proceeds, a continuous alumina layer is eventually established on the surface of the two alloys, thus decreasing significantly their oxidation rates. Altogether, the Fe-rich alloy Fe-30Cu-10Al oxidizes slightly faster than the Cu-rich alloy Fe-65Cu-10Al at both temperatures. The possible reasons for the decrease in the critical Al content needed to form external alumina scales for the Cu-rich alloy in comparison with binary Cu-Al alloys are examined.  相似文献   

2.
Two nanocrystalline two-phase Cu-Ni-Cr alloys, both prepared by mechanical alloying and containing about 20 at.% Cr but with different Ni contents (40 and 20 wt.%, respectively), have been oxidized in 1 atm O2 at 700-800 °C. Their oxidation behavior has been compared with that of two cast alloys of the same composition, already studied previously, to examine the effects of a large reduction of the size of the individual phase grains and particles. The nanophase alloy with 40 wt.% Ni formed a flat external layer of chromia of regular thickness, while the corresponding cast alloy produced a very irregular chromia layer, often protruding deeply into the alloy, only after an initial stage of rather fast corrosion involving also copper and nickel, associated with some degree of internal oxidation. By oxidation at 700 °C the nanophase alloy with 20 wt.% Ni formed an irregular chromia layer associated with low corrosion rates. The corresponding cast alloy formed complex scales containing Cu, Ni and Cr oxides, extending into the alloy in the form of large pegs, even though a very irregular and discontinuous innermost chromia layer was still able to produce low corrosion rates. On the contrary, at 800 °C both alloys formed complex scales containing mixtures of the oxides of the three metal components. However, the scales grown on the cast alloy were much more irregular in thickness and formed large protrusions into the alloy. In spite of this, the corrosion kinetics of the nanophase 20 wt.% Ni alloy at 800 °C were more irregular and, except for an initial stage, less protective than that of the cast alloy with the same composition.  相似文献   

3.
Y. Wu 《Corrosion Science》2007,49(3):1656-1672
The oxidation of Ni-xSi-10Al alloys (with x = 0, 2, 4 and 6 at.%), has been studied at 900 and 1000 °C in 1 atm of pure O2 to examine the effect of different silicon additions on the behavior of ternary Ni-Si-10Al alloys. The kinetic curves of Ni-10Al are approximately parabolic at both 900 and 1000 °C. Conversely, the kinetics of the ternary alloys at both temperatures correspond generally to a rate decrease faster than predicted by the parabolic rate law, except for the oxidation of Ni-6Si-10Al at 1000 °C, which exhibits a single nearly-parabolic stage. Oxidation of the binary alloy formed at both temperatures an internal oxidation zone beneath a layer of NiO. Oxidation of Ni-2Si-10Al at both temperatures and of the other two alloys at 900 °C formed initially a zone of internal oxidation of Al + Si. However, a layer of alumina forming at the front of internal oxidation after some time blocked the internal oxidation and produced a gradual conversion of the metal matrix of this region into NiO, with a simultaneous decrease of the oxidation rate. Conversely, the oxidation of Ni-4Si-10Al and Ni-6Si-10Al at 1000 °C did not produce an internal oxidation, but formed an alumina layer directly on the alloy surface after an initial stage when also Ni was oxidized. Therefore, silicon exerts the third-element effect by reducing the critical Al content needed for the transition from its internal to its external oxidation with respect to the corresponding Ni-Al alloy. This result is interpreted by means of an extension to ternary alloys of Wagner’s criterion for the same transition in binary alloys based on the attainment of a critical volume fraction of internal oxide.  相似文献   

4.
The oxidation of an Fe-Al alloy containing 3 at.% Al and of four ternary Fe-Cr-Al alloys with the same Al content plus 2, 3, 5 or 10 at.% Cr has been studied in 1 atm O2 at 1000 °C. Both Fe-3Al and Fe-2Cr-3Al formed external iron-rich scales associated with an internal oxidation of Al or of Cr+Al. The addition of 3 at.% Cr to Fe-3Al was able to stop the internal oxidation of Al only on a fraction of the alloy surface covered by scales containing mixtures of the oxides of the three alloy components, but not beneath the iron-rich oxide nodules which covered the remaining alloy surface. Fe-5Cr-3Al formed very irregular external scales where areas covered by a thin protective oxide layer alternated with others covered by thick scales containing mixtures of the oxides of the three alloy components, undergrown by a thin layer rich in Cr and Al, while internal oxidation was completely absent. Conversely, Fe-10Cr-3Al formed very thin, slowly-growing external Al2O3scales, providing an example of third-element effect (TEE). However, the TEE due to the Cr addition to Fe-3Al was not directly associated with a prevention of the internal oxidation of Al, but rather with the inhibition of the growth of external scales containing iron oxides. This behavior has been interpreted on the basis of a qualitative oxidation map for ternary Fe-Cr-Al alloys taking into account the existence of a complete solid solubility between Cr2O3 and Al2O3.  相似文献   

5.
The oxidation of three ternary Ni-6Si-xAl alloys containing 6, 10 and 15 at.% Al and of the corresponding binary Ni-Al alloys has been studied at 1000 °C under 1 atm O2 to examine the effect of different Al additions on the behavior of ternary Ni-Al-Si alloys containing 6 at.% Si. Of the three binary Ni-Al alloys only Ni-15Al was able to form external alumina scales. Conversely, all the three ternary alloys formed an innermost layer of alumina directly in contact with the alloy following very similar and approximately parabolic kinetics after a short faster initial stage due to transient formation of NiO. Thus, the presence of silicon is very effective to reduce the critical Al content needed to form exclusive alumina scales with respect to binary Ni-Al alloys. The third-element effect due to silicon is interpreted on the basis of an extension of Wagner’s criterion for the transition from the internal to the external oxidation of the most reactive component in binary alloys.  相似文献   

6.
The oxidation of two ternary Cu-Ni-Cr alloys containing approximately 30 and 40 at.% Cr, but with a similar Ni content, was studied at 700-800 °C in 1 atm of pure oxygen. Both alloys contain a mixture of three phases, where the phase with the largest copper and lowest chromium content (α) forms the matrix, while the phase with an intermediate content of Ni and Cr (β) and that richest in chromium (γ) are present in the form of particles dispersed in the α matrix. The kinetics of oxidation were rather irregular and presented two approximately parabolic stages which for the alloy with 40 at.% Cr were followed by a final nearly linear stage. Generally, the corrosion rates decreased by increasing the chromium content in the alloy under constant temperature and increased with temperature for a constant alloy composition. The scales formed on the two alloys were rather complex and consisted in most cases of an outermost copper oxide layer followed by a layer containing a mixture of oxides of nickel and copper as well as Cu-Cr and Ni-Cr spinel and finally by an innermost very irregular and convoluted but continuous Cr2O3 layer which protruded into the alloy and contained a number of Cu-rich metal islands.  相似文献   

7.
S. Wang  C.S. Ni 《Corrosion Science》2009,51(3):511-517
The oxidation of four Ni-10Cr-ySi-4Al alloys was studied at 1100 °C to examine the effects of Si additions (from 2 to 6 at.%) on the behavior of the alloy Ni-10Cr-4Al. Addition of 2 at.% Si prevented completely nickel oxidation, but could not form alumina scales. Larger Si additions produced alumina only over part of the alloy surface (about 20% with 4 at.% Si and 30% with 6 at.% Si), but could not prevent completely the internal oxidation of Al. The results are interpreted by extending to quaternary alloys the mechanism of the third-element effect already proposed for ternary alloys.  相似文献   

8.
The effects of porous Pt on the oxidation of Cr at 800 °C have been studied with the 18O-SIMS technique, gas phase analysis and XPS. In oxide areas with Pt a pronounced inward oxygen transport takes place and a substantial oxide growth near the Cr substrate is observed. In oxide grown on areas without Pt the counts of CrO ions in SIMS and the binding energy of O (1s) in XPS depend on the distance from the area with Pt. The experimental observations are believed to be a consequence of a high dissociation efficiency of O2 on areas with Pt in combination with a high diffusivity of O in external and internal oxide surfaces on areas both with and without Pt.  相似文献   

9.
The oxidation in 1 atm of pure oxygen of Ni–Cr–Al alloys with a constant aluminum content of 7 at.% and containing 5, 10 and 15 at.% Cr was studied at 900 and 1000 °C and compared to the behavior of the corresponding binary Ni–Al alloy (Ni–7Al). A dense external scale of NiO overlying a zone of internal oxide precipitates formed on Ni–7Al and Ni–5Cr–7Al at both temperatures. Conversely, an external Al2O3 layer formed on Ni–10Cr–7Al at both temperatures and on Ni–15Cr–7Al at 900 °C, while the scales grown initially on Ni–15Cr–7Al at 1000 °C were more complex, but eventually developed an innermost protective alumina layer. Thus, the addition of sufficient chromium levels to Ni–7Al produced a classical third-element effect, inducing the transition between internal and external oxidation of aluminum. This effect is interpreted on the basis of an extension to ternary alloys of a criterion first proposed by Wagner for the transition between internal and external oxidation of the most reactive component in binary alloys.  相似文献   

10.
The oxidation of a quaternary Cu-Ni-Cr-Fe alloy containing approximately 20 at.% Ni, 20 at.% Cr and 5 at.% Fe, balance Cu (Cu-20Ni-20Cr-5Fe), was studied at 700-900 °C in 1 atm of pure oxygen. The alloy is composed of a mixture of three phases, where the lightest α phase with the largest Cu content forms the matrix, while the other two, much richer in Cr, form a dispersion of isolated particles. At variance with the ternary three-phase Cu-20Ni-20Cr alloy examined previously, which was unable to form protective chromia scales over the alloy surface even after an extended period of oxidation, the present alloy formed complex external scales containing mixtures of the oxides of the various components plus a deep internal region containing a mixture of alloy and oxide phases. With time, a very irregular and thin but essentially continuous chromia layer formed at the bottom of the mixed internal oxidation region, producing a gradual decrease of the oxidation rate. Thus, the addition of 5 at.% Fe to Cu-20Ni-20Cr alloy is able to decrease the critical Cr content required to form the most stable oxide and promotes the formation of a continuous chromia scale under a lower Cr content in spite of the simultaneous presence of three different phases.  相似文献   

11.
Ti3AlC2 was corroded between 800 and 1100 °C in an Ar–0.2% SO2 gas atmosphere according to the equation: Ti3AlC2 + O2 → rutile-TiO2 + α-Al2O3 + (CO or CO2). The scales that formed on the Ti3AlC2 were thin and rich in α-Al2O3, whose growth rate was exceedingly slow. The TiO2 was present either as the outermost surface scale or a mixture inside the α-Al2O3-rich scale. In the Ti3AlC2, the activity and diffusivity of Ti were low, whereas those of Al were high. This was the main reason for the superior corrosion resistance of Ti3AlC2 over TiAl.  相似文献   

12.
The oxidation of two NiNb alloys containing 15 and 30 wt% Nb has been studied at 600–800 °C in pure oxygen under 1 atm O2 at 600–800 °C. The scales formed on both alloys under all conditions show an external scale, generally duplex, containing an outermost layer of nearly pure NiO and an innermost region of NiO mixed with the double NiNb oxide NiNb2O6. Moreover, the samples corroded at all temperatures also show a region of internal oxidation composed of a mixture of alpha nickel and niobium oxides (Nb2O5 or/and NbO2), which formed from both alloy phases Ni8Nb and Ni3Nb. No important depletion of niobium was observed in the alloy close to the interface with the zone of internal oxidation, while the depth of this region is generally much higher than measured for the corrosion of the same alloys under low oxygen pressures at the same temperatures. The corrosion mechanism of these alloys is examined with special reference to the effects of the low solubility of niobium in nickel.  相似文献   

13.
The oxidation of iron in dry and wet O2 at 400-600 °C has been re-investigated using gravimetry, SEM/EDX, XRD and FIB. In the presence of O2, water vapour accelerates iron oxidation at 500 and 600 °C. At 400 and 500 °C the magnetite layer is duplex and exposure to water vapour results in the formation of blades on top of a fine-grained hematite layer. At 600 °C it results in a surface without needles and blades. The increased oxidation rate at 500 and 600 °C is attributed to a smaller grain size in the hematite layer resulting in faster ion transport.  相似文献   

14.
The cyclic-oxidation behavior of Ti3AlC2 was investigated at 1000–1300 °C in air for up 40 cycles. It was revealed that Ti3AlC2 had excellent resistance to thermal cycling. The cyclic oxidation of Ti3AlC2 basically obeyed a parabolic law. In all cases, the scales were dense, resistant to spalling and highly stratified. The inner continuous α-Al2O3 layer was well adhesive, while the outermost layer changed from rutile TiO2 at temperatures below 1100 °C to Al2TiO5 at 1200 and 1300 °C, respectively. At 1300 °C, a mechanical-keying structure of inner Al2O3 to the Ti3AlC2 substrate formed, which improved the resistance to scale-spallation.  相似文献   

15.
High temperature oxidation behavior of the Cr2AlC coating was investigated at 900–1100 °C. During the oxidation, a continuous Al2O3 scale formed, resulting in the improvement of the oxidation resistance of the substrate. Meanwhile, the oxidation induced depletion of Al within the Cr2AlC coating resulted in the transformation of Cr2AlC to Cr–C phases. Compared with bulk Cr2AlC, the Cr2AlC coating possessed similar oxidation behavior, but with higher oxidation rate. This is because a great number of columnar grain boundaries existed in the as-deposited coating, through which oxygen and nitrogen could diffuse inwardly, resulting in the internal oxidation and nitridation.  相似文献   

16.
The oxidation behavior of mechanically alloyed microcrystalline NbCr2 intermetallics was investigated at 950-1200 °C in air by SEM in comparison with coarse-grain cast alloys. Results indicate that the mechanically alloyed alloys possess a better oxidation resistance and are less permeable to nitrogen than the cast alloys. At 1200 °C, the mechanically alloyed NbCr2 alloys show a better resistance to scale spallation than the cast materials. The differences observed above are attributed to the finer grains increasing the relaxation of the oxide scale stress and improving the adhesion of the oxide layer on the matrix.  相似文献   

17.
The oxidation of a Cu-Cr alloy containing about 60 wt% Cr and of two Cu-Cr alloys containing about 40 wt% Cr was studied at 700 and 800 °C in 1 atm O2. The 60 wt% Cr alloy was prepared by powder metallurgy (PM) and had a phase particle size of 50-150 μm. One of the two alloys containing about 40 wt% Cr was prepared by mechanical alloying (MA) and had a phase grain size ranging from 10-50 nm to 200-300 nm, depending on the location, while the other was prepared by magnetron sputtering (MS) and had a phase grain size around 5-10 nm. The most important difference between the oxidation behavior of the three alloys is the formation of an exclusive chromia scale on the surface of the Cu-40 wt% Cr alloy prepared by magnetron sputtering and of a continuous chromia layer beneath an outermost layer of copper oxides on the corresponding alloy prepared by mechanical alloying, while the Cu-60 wt% Cr alloy prepared by powder metallurgy formed complex scales composed mostly of CuO, Cu2O with some Cu2Cr2O4 and Cr2O3. Thus, the microstructure of two-phase binary alloys has a strong effect of their oxidation behavior. In particular, a decrease of the alloy grain size favors the exclusive external oxidation of the most reactive component, reducing the corresponding critical content in the alloy. This effect is attributed to the presence of larger concentrations of rapid diffusion paths for the migration of the components in the alloy as well as to a faster dissolution of the particles of the Cr-rich phase in the copper matrix.  相似文献   

18.
This paper presents the cyclic oxidation behaviour of electrodeposited pure, nano CeO2 (9-15 nm)- and micron CeO2 (5 μm)-modified Ni3Al coatings on Fe-Ni-Cr substrate at 1050 °C for periods up to 500 h. The pure Ni3Al coating had a marginal resistance to cyclic oxidation at 1050 °C, while the CeO2-dispersed Ni3Al coatings showed much better cyclic oxidation resistance. This difference was attributed to many beneficial effects of CeO2 including changing the growth mechanism of α-Al2O3 scale, reducing the growth rate of the scale, improving mechanical properties of the scale, and reducing void formation at the scale/coating interface and at the scale-grain boundaries.  相似文献   

19.
H.T. Ma  C.H. Zhou  L. Wang 《Corrosion Science》2009,51(8):1861-1867
Pure Fe, Cr and Fe-Cr binary alloys were corroded in O2 containing 298 ppm KCl vapour at 750 °C. The corrosion kinetics were determined, and the microstructure and the composition of oxide scales were examined. During corrosion process, KCl vapour reacted with the formed oxide scales and generated Cl2 gas. As Cl2 gas introduced the active oxidation, a multilayer oxide scales consisted of an outmost Fe2O3 layer and an inner Cr2O3 layer formed on the Fe-Cr alloys with lower Cr concentration. In the case of Fe-60Cr or Fe-80Cr alloys, monolayer Cr2O3 formed as the healing oxidation process. However, multilayer Cr2O3 formed on pure Cr.  相似文献   

20.
In future power plant technologies, oxyfuel, steels are subjected to steam rich and carbon dioxide rich combustion gases. The effect of simulated combustion gases H2O/CO2/O2 (30/69/1 mol%) and H2O/CO2 (30/70 mol%) on the corrosion behavior of low alloyed steels, 9–12% chromium steels and an austenitic steel were studied. It was discovered that the formation of protective chromium rich oxides is hampered due to the carburization of the base material and the formation of chromium rich carbides. The kinetics of corrosion and carburization are quantified. The effect of temperature and the effect of gas pressure are analyzed statistically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号