首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of solute size relative to membrane pore size on the critical flux during the ultrafiltration of protein solutions was investigated using the constant pressure method. Hydrophilic regenerated cellulose membranes with a cut-off of 10, 30 and 100 kg mol−1, model proteins and skimmed milk solutions were used. The critical flux mainly increased with the pore size of the ultrafiltration membrane. The lowest critical fluxes, 40-50 L m−2h−1, were obtained with the retentive 10 kg mol−1 cut-off membrane. This membrane had a very low permeability and, thus, the critical fluxes were achieved at high transmembrane pressures (TMP): 1.7-2.3 bar. With the 100 kg mol−1 cut-off membrane critical fluxes were obtained at 0.2 bar TMP, which were around 100 L m−2 h−1, slightly declining with increasing protein molar mass. In skimmed milk experiments the permeate flux decreased when the protein molecules were enzymatically split to peptides. A critical flux for skimmed milk solution could not be found unless the protein concentration was diluted to 0.3-w% or lower. The results with model proteins were then compared to those obtained with skimmed milk resulting in β-lactoglobulin being the worst foulant.  相似文献   

2.
The impact of high-frequency cross-flow back-pulsing on microsieves permeation performance during the microfiltration of whole milk is described in this work. Silicon nitride microsieves (0.8 μm rectangular) combined with a dynamic permeate cross-flow back-pulsing technique to control fouling were used. Results showed that the transmembrane pressure (TMPpos) and the back-pulsing frequency were the process variables that most influenced microsieves performance. Permeation rates in the range of 5000 up to 27,000 L h?1 m?2 which are one order of magnitude higher than those reported for skim milk microfiltration were obtained depending on the process conditions selected. It was concluded that higher permeation rates are obtained when the back-pulse pressure, i.e., the negative TMP is set equal to the positive TMP, both at 150 mBar and the back-pulsing frequency at 15 Hz.  相似文献   

3.
In tangential flow filtration, the non-uniform TransMembrane Pressure (TMP) on the membrane length produces a non homogeneous filtration cake, initiates process selectivity changes and modifies the permeate quality. The purpose of this study is to create a tubular ceramic membrane prototype with a more uniform TMP, intended to filtration of fouling fluids. The principle of this membrane structure is to waterproof the external membrane surface to limit flow circulation in the porous support of the membrane. The production was controlled by sizing «permeation vents». This development was achieved using a CFD modelling tool interacting with experiments. A preliminary modelling study was made with water. This work was afterwards applied to the industrial process of casein micelle separation from skim milk. The influence of operating conditions on the membrane hydrodynamics was highlighted. The modelling results were experimentally confirmed, with a discrepancy smaller than 3% and a reproducible water permeability of 2.3 L h−1 bar−1 for 1 mm-wide vent (TMP = 1 bar, T = 20 °C). Then, milk filtration experiments showed a production ratio milk/water equal to 1/2. The permeate quality parameters were studied and the fouling phenomena were taken into account. A parametric study led to the sizing of a final prototype. Its efficiency was experimentally evaluated.  相似文献   

4.
Reverse osmosis (RO) is an interesting process to eliminate small organic solutes (carboxylic acids and alcohols) from distillery condensates before recycling them into the fermentation step. This work investigates the influence of transmembrane pressure, pH and volume reduction factor (VRF) on the efficiency of reverse osmosis treatment of condensate from distillery stillage concentration at pilot scale using three pre-selected membranes (CPA2 and ESPA2 from Hydranautics, BW30 from DOW). Performances were assessed according to permeate flux, solutes rejection and abatement of fermentation inhibition. Transmembrane pressure increase leads to an increase of these three parameters with a plateau for rejections and abatement at 20 bar; however, in order to comply with membranes manufacturer's recommendations and to limit or delay polarization and fouling, it was decided to keep the permeate flux below a value of 30 L h−1 m−2. This corresponded to a maximum pressure of 10 bar for CPA2 and ESPA2 membranes and 25 bar for BW30 membrane. pH increase leads to a diminution of permeate flux and an increase of carboxylic acids rejection whatever the membrane; nevertheless, no abatement of fermentation inhibition is observed. Increasing VRF provokes a decrease of the permeate flux. Although local rejections are stable, the mean rejection assessed with the raw condensate (feed) and the mean permeate decreases. However, the fermentation inhibition remains under 10% up to a VRF of 8. BW30 membrane exhibits the highest rejections and inhibition abatement. On the basis of the pilot scale results with the BW30 membrane, a preliminary estimation of the membrane area is proposed for an industrial plant with 100 m3 h−1 of condensate flow rate and the optimized parameters (pressure 25 bar, no pH modification, VRF 4 and 8).  相似文献   

5.
New microfiltration membranes from mineral coal fly-ash material are obtained using ceramic method. Paste from mineral coal fly ash (obtained by calcinations at 800 °C of non-grinded mineral coal) is extruded to elaborate a porous tubular configuration used as supports. The support heated at 1125 °C, shows an average pore diameter and porosity of about 4.5 μm and 51%, respectively. The properties in terms of mechanical and corrosion resistances are very interesting. The elaboration of the layer based on fly-ash powder (obtained by sintering at 700 °C of a finely grinded mineral coal) is performed by slip-casting method. The heating treatment at 800 °C leads to an average pore size of 0.25 μm. The water permeability determined of this membrane is 475 L/h m2 bar. This membrane can be used for crossflow microfiltration. The application to the treatment of the dying effluents generated by the washing baths in the textile industry shows an important decrease of turbidity (inferior to 1 NTU), of chemical oxygen demand (COD) values (retention rate of about 75%) and a total color removal. The performances in term of permeate flux and efficiency were determined and compared to those obtained using a commercial alumina microfiltration membrane. Almost the same stabilised permeate flux was obtained (about 100 L h−1 m−2). So, it seems that the prepared membrane is suitable for such wastewater treatment.  相似文献   

6.
《分离科学与技术》2012,47(16):2491-2511
ABSTRACT

The feasibility of utilizing the phenomenon of dynamic membrane formation with crossflow microfiltration in treating domestic wastewater was investigated. The primary membrane, used throughout the investigation, was made of woven polyester. Different chemical species, such as CaCO3, FeCl3, and NaAIO2, were used in forming dynamic membranes on top of the primary membrane. Secondary effluent from a domestic activated sludge wastewater treatment plant was treated. A calcium carbonate dynamic membrane produced a stabilized permeate flux of 90 L/m2·h, with a permeate turbidity of 0.21 Nephelometric Turbidity Unit (NTU), at optimum conditions. Ferric chloride produced optimum results when it was mixed with tap water. A permeate flux and turbidity of 70 L/m2-h and 0.16 NTU, respectively, were obtained. Sodium aluminate produced a stabilized permeate flux of 77 L/m2·h when it was mixed with tap water during the formation of the dynamic membrane. The permeate turbidity was 0.16 NTU. The fouling mechanism of the three dynamic membranes was investigated, and empirical models were produced.  相似文献   

7.
Modification of poly (ether imide) (PEI) ultrafiltration (UF) membranes was attempted by blending charged surface modifying macromolecule (cSMM). Compared to the pure PEI membrane, blending of PEI with cSMM resulted in blend membranes with enhanced UF characteristics such as lower hydraulic resistance (Rm) and higher pure water flux (PWF) coupled with higher water content (WC). Among the various modified membranes, blend membranes with 5 wt % cSMM concentration exhibited higher PWF (60.38 L m?2 h?1), WC (73.6%), protein permeate flux (27.12 L m?2 h?1) and lower flux decline rate (Rfd) (55.1%), Rm (5.21 kPa/L m?2 h?1), bovine serum albumin (BSA) rejection (87.1%). Meanwhile, the fouling resistant ability was studied by flux recovery ratio (FRR) after water and alkali cleaning, irreversible and reversible fouling rate. Higher FRR after water cleaning (95.07%), FRR after alkali cleaning (97.1%), reversible fouling rate (50.14%) and lower irreversible fouling rate (5%) exhibited by 5 wt % cSMM membranes showed its better antifouling ability compared to pure PEI and other blend membranes because of its higher hydrophilic nature. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40320.  相似文献   

8.
A promising cleaner approach, including chemical extraction, separation and purification by membranes separation technology, for producing ephedrine from Ephedra sinica Stapf was introduced. The extraction yield of ephedrine reached 92.45 ± 0.46%, increased by 28.25 ± 0.13% than that of the traditional process, at solid-to-liquid ratio of 1/10, extraction temperature of 80 °C, total extraction time of 20 h and reextraction for 3 times. In microfiltration, the transmissivity for ephedrine was up to 97.88 ± 1.06% and the retention rate of impurities reached 78.56 ± 0.96% when the membranes with pore size of 0.45 μm were employed at inlet and outlet operating pressure of 0.26 MPa and 0.14 MPa, respectively. The surface velocity of membrane channel was 3.5 m s−1 and membrane flux was 207 ± 3.71 l m−2 h−1. Nanofiltration membranes with 160 Da molecular weight cut-off (MWCO) were adopted to separate the ephedrine from microfiltration permeate at a transmembrane pressure of 0.6 MPa wherein the retention rate of ephedrine reached 99.88 ± 0.23% and the membrane flux was 19.88 ± 1.12 l m−2 h−1. For this improved approach, the COD of nanofiltration permeate was only 110 ± 12.56 mg l−1 which could be recycled to the extraction process, causing a decrease by 59.38 ± 1.67% of water consumption and 75.76 ± 1.89% of wastewater generation in comparison with those of the traditional process.  相似文献   

9.
This work addresses the performance and modeling of the separation of oil-in-water (o/w) emulsions using low cost ceramic membrane that was prepared from inorganic precursors such as kaolin, quartz, feldspar, sodium carbonate, boric acid and sodium metasilicate. Synthetic o/w emulsions constituting 125 and 250 mg/L oil concentrations were subjected to microfiltration (MF) using this membrane in batch mode of operation with varying trans-membrane pressure differentials (ΔP) ranging from 68.95 to 275.8 kPa. The membrane exhibited 98.8% oil rejection efficiency and 5.36 × 10−6 m3/m2 s permeate flux after 60 min of experimental run at 68.95 kPa trans-membrane pressure and 250 mg/L initial oil concentration. These experimental investigations confirmed the applicability of the prepared membrane in the treatment of o/w emulsions to yield permeate streams that can meet stricter environmental legislations (<10 mg/L). Subsequently, the experimental flux data has been subjected to modeling study using both conventional pore blocking models as well as back propagation-based multi-layer feed forward artificial neural network (ANN) model. Amongst several pore blocking models, the cake filtration model has been evaluated to be the best to represent the fouling phenomena. ANN has been found to perform better than the cake filtration model for the permeate flux prediction with marginally lower error values.  相似文献   

10.
Xiaozhen Zhang 《Desalination》2009,249(1):364-367
ZrO2/cordierite composite microfiltration (MF) membrane was prepared by the combination of extrusion and slip casting techniques. The electrokinetic properties of as-prepared membrane were characterized by streaming potential measurements operated in tangential microfiltration mode. The influences of pH, electrolyte species and concentrations of filtered solutions on the electrokinetic properties and permeate flux were investigated. Results show that the streaming potentials are dependent on the pH, types of the electrolyte and concentrations of filtered solutions. The isoelectric point (IEP) of membranes moved from 4.2 to 5.4 with different types of 10 3 M electrolyte solutions. The change of ionic concentration of NaCl solution does not alter the IEP of the membranes, but does make the streaming potential tend to be zero at high salt concentration. The specific adsorption of Ca2+ and SO42 ions in CaCl2 and Na2SO4 solutions onto the pore wall can alter the IEP and the net charge sign of the membrane. The as-prepared ZrO2/cordierite membrane shows a maximal permeate volume flux near the IEP.  相似文献   

11.
The efficiency of crossflow microfiltration processes is limited by membrane fouling and concentration polarization leading to permeate flux decline during operation. The experiments that were carried out in the laboratory were conducted to determine and investigate the performance, behaviour and the fouling susceptibility of new ceramic tubular microfiltration membranes during the crossflow filtration of yeast suspensions. The tubular membranes of nominal pore size 0.5 microns were fouled over a varied range of concentration, temperatures, pH, crossflow velocities and system pressures. The typical filtration conditions were at a temperature of 25°C, a system pressure of 1.5 bar and a concentration of 0.03 g/L yeast suspension. These parameters varied during subsequent investigations. After each experiment, the membrane and the rig were cleaned using a three stage cleaning process and was reused in order to replicate industrial filtration conditions. The effects of repeated fouling and cleaning cycles upon membrane flux over time and cleaning efficiency are investigated and their influence over time is also documented. For every experiment, the flux data was recorded over a 50 min period and the membrane was changed after the PWF declined considerably due to excessive fouling over time. Chemical cleaning consisted of a sequential application of a 1% caustic solution through the rig followed by a 2% hypochlorite solution and a 2% nitric solution, all at 50°C. The permeate flux was shown to decrease with filtration time during the development of the fouling layer. Once the fouling layer was developed and established, there appeared to be a leveling of permeate flux. The experimental results are presented in the report and the flux values at different conditions are presented.  相似文献   

12.
《分离科学与技术》2012,47(11):2473-2481
Abstract

Wash water from a fresh‐cut vegetable processing plant was filtered using a submerged microfiltration module containing PVDF membranes. The unfiltered water and permeate were analyzed and the flux and fouling rate were monitored in an effort to find the ideal parameters for the system. The study found the system had a pure water rate of 24 L/hm2 which was reduced to 19 L/hm2 after 6 hours with cleaning, when run at 40–50 kPa. The ideal cleaning regime was found to be every 1 hour for a period of 120 seconds at 200 kPa.  相似文献   

13.
It has been proven that functional properties of milk proteins can improve the quality and nutritional value of foods. This paper investigates the separation of whey proteins from casein micelles using a Multi Shaft Disk (MSD) module and a rotating disk dynamic filtration module. The MSD module was equipped with 6 ceramic membranes of 0.2 µm pores. PVDF and Nylon membranes of 0.2 µm pores were tested in the rotating disk module. Permeate flux with the MSD module increased with TMP and rotation speed, reaching a maximum of 132 L h− 1 m− 2 at 1931 rpm. α-Lactalbumin (α-La) and β-Lactoglobulin (β-Lg) transmissions also increased with rotation speed, ranging from 25% at 1044 rpm to 40% at 1931 rpm . With a Nylon membrane, the rotating disk module yielded lower permeate fluxes than the MSD module, while when equipped with a PVDF membrane it provided higher permeate fluxes than the MSD, but casein micelles rejection was lower. α-La and β-Lg transmissions were higher with the rotating disk module, using Nylon and PVDF membranes, than for the MSD. From this comparison, it can be concluded that the MSD module gave the best compromise between high permeate flux, high α-La and β-Lg transmissions and high casein micelles rejection.  相似文献   

14.
Gas‐sparged microfiltration experiments with baker's yeast suspensions were performed using a 0.15 µm PCI multi‐tubular membrane module. The permeate flux and the enhancement from gas sparging were measured over the following operational parameter ranges: yeast suspension concentration 0.01–10% (wt), transmembrane pressure 0.5–4.0 bar, liquid crossflow velocity 0.36–1.8 ms?1, gas superficial velocity 0.18–1.02 ms?1. It was demonstrated that injecting air to create a gas–liquid two‐phase crossflow operation can significantly increase the permeate flux. The observed enhancement, resulting from injecting a relatively small amount of gas with a superficial velocity of 0.18 ms?1, ranges from 10% when fouling is insignificant to 135% when fouling tendency is severe. Controlled pulse injection leads to further increase in permeate flux. Examining the dependence of permeate flux on transmembrane pressure, it is clearly demonstrated that the injection of gas will elevate the value of the limiting flux. There is also evidence to show that the value of critical flux is increased when gas injection is applied. Further quantitative analysis will be performed in our future work. © 2001 Society of Chemical Industry  相似文献   

15.
《分离科学与技术》2012,47(1):28-34
Submerged hollow fiber membrane system is widely used in water and wastewater treatment plants. One of the major problems of the microfiltration/ultrafiltration (MF/UF) process is membrane fouling. Few techniques have been developed to reduce membrane fouling and increase critical flux of the filtration process. In this study, membrane vibration was applied to improve the critical flux in a submerged hollow fiber MF system. A bench scale unit was especially built for this purpose and different vibrating speed was tested. The effect of the feed concentration and vibrating speed on the critical flux measurement were investigated. The critical flux was measured at different vibrating speeds varied from 0–500 oscillation per minute (opm) (5.83 Hz). The lowest critical flux was 15 L·m?2·h?1 when no membrane vibration was used and then increased gradually from 27 to 56 L·m?2·h?1 when the vibrating speed increased from 100 to 500 opm (8.35 Hz). A sharp drop in the critical flux was noticed when the concentration of feed suspension doubled from 5 g/L to 10 g/L. However, the increase in the critical flux was insignificant at higher feed concentration even when a high membrane vibrating speed was applied. This signifies that there is a limit for flux improvement in a vibratory system which is strongly dependent on the feed concentration.  相似文献   

16.
Application of membrane filtration has been significantly expanded throughout the world in two decades. A project was launched to facilitate the application of membrane filtration in drinking water plants in Korea in 2004. Five pilot plants each with a capacity of 500 m3/d were installed in a Gueui Drinking Water Plant. The Han River water was a main raw water source for the plants. Key parameters of the raw water were examined. The raw water characteristics are tremendously varied with seasons and rain fall, especially in terms of turbidity and algae numbers. The operation of pretreatment was of substantial importance due to the variation of the raw water. Coagulation and powdered activated carbon adsorption were performed as pretreatment options of microfiltration. The coagulant doses were optimized with increasing turbidity compared to the conventionally used operational manual. PAC adsorption was applied to overcome fouling by high algae numbers. The addition of PAC relieved the aggravation of fouling. However, the PAC addition could not stop the undergoing fouling. A set of laboratory experiments showed that the removal of floc aggregates after coagulation and PAC was critical to maintain high water flux in the membrane system.  相似文献   

17.
A new approach to a membrane hybrid system by pre-coating the hollow fiber membrane with powdered activated carbons (PAC) was evaluated for its ability to minimize the fouling of the membrane and to remove organic material from wastewater. This preliminary study evaluates the performance of a microfiltration membrane coated with three kinds of PACs: wood based (WB), charcoal based (CB) and coconut based (HA). Broadly, two scenarios were evaluated: one with low amounts of PAC coated on the membrane and another at higher amounts of PAC coating. The results indicate that the pre-coated membrane can effectively arrest the fouling agents in the wastewater in reaching the membrane pores and thereby limit membrane fouling. Interestingly, it was also found that, without any pre-treatment or addition of PAC in the tank, the pre-coated membrane also had the ability to retain organic materials. For the hollow fiber microfilter membrane used in the study having surface area of 2.58×10-03 m2 surface area, pre-coating the membrane individually with 458 mg of HA-PAC, 497 mg of WB-PAC and 906 mg CB-PAC, the reduction in permeate flux was as little as 14–20% after 8 hours of each operation and the maximum organic removals was about 76%, for all the three kinds of PAC coatings. The type of PAC coated on the membrane and the amount coated could be the key factors in deciding the performance of the system. Although further studies are required, it is evident that the PAC pre-coated membrane system has great potential in successfully reducing membrane fouling, which could improve membrane life, enhance process performance and reduce membrane cleaning time.  相似文献   

18.
Membrane filtration of biomass is usually accompanied by significant flux decline due to cake‐layer formation and fouling. Crossflow filtration with flux controlled by pumping the permeate can produce stable fluxes if a ‘critical flux’ is not exceeded. Below critical flux the transmembrane pressure is typically very low and increases linearly with imposed flux. Above the critical flux the transmembrane pressure rises rapidly signifying cake‐layer formation which is usually accompanied by a continued rise in transmembrane pressure and/or a drop in delivered flux. A range of microfiltration and ultrafiltration membranes with pore sizes from 0.22 to 0.65 µm and molecular weight cut‐off of 100 kDa was used. The feed was an activated sludge mixed liquor with concentration in the range of 3–10 g dm−3. The results show that the critical flux depends on feed concentration and crossflow velocity, being higher for higher crossflow velocity or lower feed concentration. Critical flux was also dependent on membrane type, being lower for hydrophobic membranes. Although the transmembrane pressure was higher for the larger pore size membrane, no significant difference in critical flux was observed among different pore size membranes. © 1999 Society of Chemical Industry  相似文献   

19.
Loose nanofiltration membrane emerges as required recently, since it is hard for conventional nanofiltration membrane to fractionate mixture of dyes and salts in textile wastewater treatment. However, the polymeric membranes unavoidably suffer from membrane fouling, which was caused by the adsorption of organic pollutants (like dyes). Normally, the dye fouling layer will shrink membrane pore size, thus resulting in flux decline and rejection increase. It is thought that membrane fouling may be a double-edged sword and can be an advantage if properly utilized. Thereby, loose nanofiltration membranes were constructed here by a green yet effective method to fractionate dyes/salt mixture by taking advantage of membrane fouling without using poisonous ingredients. A commercially available polyacrylonitrile (PAN) ultrafiltration membrane with high permeability was chosen as the substrate, and dyes were used to contaminate PAN substrate and formed a stable barrier layer when adsorption of dyes reached dynamic equilibrium. The resultant PAN-direct red 80 (DR80) composite membranes displayed superior permeability (~128.4 L m−2 h−1) and high rejection (~99.9%) to DR80 solutions at 0.4 MPa. Moreover, PAN-DR80 membranes allowed fast fractionation of dyes/sodium chloride (NaCl) mixture, which maintained a negligible dye loss and a low NaCl rejection (~12.4%) with high flux of 113.6 L m−2 h−1 at 0.4 MPa. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47438.  相似文献   

20.
BACKGROUND: This work was carried out to investigate and analyze the interrelated dynamics of mass transport, membrane fouling and flux decline during nanofiltration of tartrazine. A combined application including pore diffusion transport model and a material balance approach was used to model an experimental flux data obtained from different values of pH (3, 5, 7 and 10), feed‐dye concentration (25, 100 and 400 mg L?1), and transmembrane pressure (1200, 1800 and 2400 kPa). RESULTS: Almost 100% dye solution removal and a permeate flux of 135 L m?2 h?1 were obtained for 25 mg L?1 and 1200 kPa at pH 10. At pH 10, lower membrane fouling was obtained due to the increase of electrostatic repulsion between anionic dye molecules and the more negatively charged membrane surface. Flux decline and membrane fouling increased together with transmembrane pressure and dye concentration. Fouling was found to be directly related to proportional‐permeation coefficient (kO′) of dye which was identified as the solute passing into the permeate with respect to the amount transported into the membrane from the feed. CONCLUSIONS: For a decrease of pH (10 to 3) and transmembrane pressure (2400 to 1200 kPa) or an increase of feed‐dye concentration (25 to 400 mg L?1), fewer dye molecules passed into the permeate with respect to the amount transported into the membrane from the feed. This situation depended mainly on the combined influences of the gel layer and fouling in the membrane. Copyright © 2010 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号