首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrochemical behaviour of coated Cr3C2–NiCr steel in aerated 0.5 M H2SO4 solution was studied by means of electrochemical a.c. and d.c. measurements. A complete structural characterization of the coated steel before and after electrochemical tests was also carried out to access the corrosion mechanism of coated steel, electrolyte penetration through the coating, and to confirm the results obtained using electrochemical techniques. Two types of Cr3C2–NiCr coatings produced by a high velocity oxy-fuel spraying system (HVOF) were studied. Differences between coated steels are related to the spraying parameters reflecting their behaviour against corrosion phenomena. The electrochemical behaviour of the coated steel was strongly influenced by porosity and the presence of microcracks in the coating. Once the electrolyte reaches the steel substrate, it corrodes in a galvanic manner resulting in coating detachment from the steel.  相似文献   

2.
Three new Schiff bases, viz., N,N′-ethylen-bis (salicylidenimine) [S1], N,N′-isopropylien-bis (salicylidenimine) [S2], and N-acetylacetone imine, N′-(2-hydroxybenzophenone imine) ortho-phenylen [S3] have been investigated as corrosion inhibitors for mild steel in 0.5 M H2SO4 using Tafel polarization and electrochemical impedance spectroscopy (EIS). The three Schiff bases function as good inhibitors reaching inhibition efficiencies of ∼97-98% at 300 ppm concentration. The fraction <theta> of the metal surface covered by the inhibitor is found to increase with inhibitor concentration. Of the three Schiff bases, the S2 shows better efficiency than the other two Schiff bases. The adsorption of the inhibitor follows Langmuir isortherm. Thermodynamic calculations indicate the adsorption to be physical in nature.  相似文献   

3.
The electrochemical behavior of a commercial LiCoO2 with spherical shape in a saturated Li2SO4 aqueous solution was investigated with cyclic voltammetry and electrochemical impedance spectroscopy. Three redox couples at ESCE = 0.87/0.71, 0.95/0.90 and 1.06/1.01 V corresponding to those found at ELi/Li+=4.08/3.83, 4.13/4.03 and 4.21/4.14 V in organic electrolyte solutions were observed. The diffusion coefficient of lithium ions is 1.649 × 10−10 cm2 s−1, close to the value in organic electrolyte solutions. The results indicate that the intercalation and deintercalation behavior of lithium ions in the Li2SO4 solution is similar to that in the organic electrolyte solutions. However, due to the higher ionic conductivity of the aqueous solution, current response and reversibility of redox behavior in the aqueous solution are better than in the organic electrolyte solutions, suggesting that the aqueous solution is favorable for high rate capability. The charge transfer resistance, the exchange current and the capacitance of the double layer vary with the charge voltage during the deintercalation process. At the peak of the oxidation (0.87 V), the charge transfer resistance is the lowest. These fundamental results provide a good base for exploring new safe power sources for large scale energy storage.  相似文献   

4.
In this work, we report a basic study on the mechanism of lithium ion de-insertion/insertion process from/into LiMn2O4 cathode material in aqueous Li2SO4 solution using electrochemical impedance spectroscopy (EIS). An equivalent circuit distinguishing the kinetic parameters of lithium ion de-insertion/insertion is used to simulate the experimental impedance data. The fitting results are in good agreement with the experimental results and the parameters of the kinetic process of Li+ de-insertion and insertion in LiMn2O4 at different potentials during charge and discharge are obtained using the same circuit. The results indicate that the de-insertion/insertion behavior of lithium ions at LiMn2O4 cathode in Li2SO4 aqueous solution is similar to that reported in the organic electrolytes. The charge transfer resistance (Rct), warburg resistance, double layer capacitance and chemical diffusion coefficient (DLi+) vary with potentials during de-insertion/insertion processes. Rct is lowest at the CV peak potentials and the important kinetic parameter, DLi+ exhibits two distinct minima at potentials corresponding to CV peaks during de-insertion–insertion and it was found to be between 10−8 and 10−10 cm2 s−1during lithium de-insertion/insertion processes.  相似文献   

5.
The role played by the substitution of Mn on the electrochemical behaviour of Li3V2(PO4)3 has been investigated. Independently of the synthesis route, the Mn doping improves the electrochemical features with respect to the undoped samples. Different reasons can be taken into consideration to explain the electrochemical enhancement. In the sol–gel synthesis the capacity slightly enhances due to the Mn substitution on both the V sites, within the solubility limit x = 0.124 in Li3V2−xMnx(PO4)3. In the solid state synthesis the significant capacity enhancement is preferentially due to the microstructural features of the crystallites and to the LiMnPO4 phase formation.  相似文献   

6.
Manufacturing of enamels and frits has undergone dramatic changes since the 1980s. This has required significant efforts in research and development. Typical compositions of frits for ceramic tiles are silica-based with fluxing agents; some of the components are highly corrosive. Improvements in the production of frits would imply the selection of the most adequate refractories as a function of the chemical composition of the considered frit and the fabrication procedure.The refractories currently used in frit furnaces are Al2O3-ZrO2-SiO2 (AZS) fused cast materials and Cr2O3-based materials. In this work, results on dynamic corrosion studies of AZS and Cr2O3-based materials by two ZnO-containing frits are described. Experiments have been performed using the “Merry Go Round” test at ≅1500 °C. Macroscopic results are analysed in terms of the remaining volume after the tests, as usually done in the glass industry. The significance and limits of such an approach are discussed.  相似文献   

7.
In this work results on dynamic corrosion studies of fused cast Al2O3-SiO2-ZrO2 and isostatically pressed and sintered Cr2O3-based refractories by two crystalline (transparent) frits are described. Experiments have been performed using the “Merry Go Round” test at ≅1500 °C.Microstructural and mineralogical analyses of selected areas from the corroded regions of the studied refractories were performed by reflected light optical microscopy and scanning electron microscopy with analysis by X-ray dispersive energy.Significant differences between the corrosion mechanisms acting in the two types of materials were found. In the fused cast Al2O3-SiO2-ZrO2 specimens corrosion took place by the dissolution of alumina and zirconia in the frit and in the glass formed by the reaction between the frit and the refractory. In the Cr2O3-based materials the corrosion process was controlled by the capillar penetration of the molten frit through the open pores. The reaction between the ZnO from the frits and Cr2O3 led to the formation of spinel (ZnCr2O4), a high-melting point bonding phase that retarded the frit penetration. Results are discussed using the relevant phase equilibrium diagrams.  相似文献   

8.
The mechanism of the oxygen reduction reaction (ORR) in a naturally aerated stagnant 0.5 M H2SO4 was studied using electrochemical methods. The cathodic polarization curve showed three different regions; electrochemical impedance spectroscopy (EIS) measurement was used accordingly. The EIS data were analyzed, and the mechanism for the ORR was proposed consequently. The three regions include a limiting current density region with the main transfer of 4e controlled by diffusion (−0.50 V < E < −0.40 V), a combined kinetic-diffusion region (−0.40 V < E < −0.20 V) with an additional 2e transfer due to the adsorption of the anions, and a hump phenomenon region (−0.20 V < E < −0.05 V), in which the chemical redox between the anodic intermediate and the cathodic intermediate , together with the electrochemical reaction, synergistically results in the acceleration of the ORR. Therefore, a coupled electrochemical/chemical process (the EC mechanism) in the hump phenomenon region was proposed, and a good agreement was found between the experimental and fitted results. The EC mechanism was confirmed by the deaerated experiments.  相似文献   

9.
Poly(3-octyl thiophene) (P3OT) and poly(3-hexylthiophene) (P3HT) dissolved in toluene were deposited onto 1018 carbon steel and corroded in 0.5 M H2SO4. P3OT and P3HT films were chemically deposited by drop casting onto 1018-type carbon steel with two surface finishing, i.e. abraded with 600-emery paper and with alumina (Al2O3) particles of 1.0 μm in diameter (mirror finish). Their corrosion resistance was estimated by using potentiodynamic polarization curves, linear polarization resistance (LPR), and electrochemical impedance spectroscopy, EIS, techniques. In all cases, polymeric films protected the substrate against corrosion, but the protection was improved if the surface was polished with Al2O3 particles of 1.0 μm in diameter. The polymer which gave the best protection was P3HT because the amount of defects was much lower than that for the P3OT films. The polymers did not act only as a barrier layer against aggressive environment, but they improved the passive film properties by decreasing the critical current necessary to passivate the substrate, increasing the pitting potential and broadening the passive interval.  相似文献   

10.
Hot corrosion is one of the main destructive factors in thermal barrier coatings (TBCs) which come as a result of molten salt effect on the coating–gas interface. Hot corrosion behavior of three types of plasma sprayed TBCs was evaluated: usual CSZ, layer composite of CSZ/Micro Al2O3 and layer composite of CSZ/Nano Al2O3 in which Al2O3 was as a topcoat on CSZ layer. Hot corrosion studies of plasma sprayed thermal barrier coatings (TBCs) were conducted in 45 wt% Na2SO4+55 wt% V2O5 molten salt at 1050 °C for 40 h. The graded microstructure of the coatings was examined using scanning electron microscope (SEM) and X-ray diffractometer (XRD) before and after hot corrosion test. The results showed that no damage and hot corrosion products was found on the surface of CSZ/Nano Al2O3 coating and monoclinic ZrO2 fraction was lower in CSZ/Micro Al2O3 coating in comparison with usual CSZ. reaction of molten salts with stabilizers of zirconia (Y2O3 and CeO2) that accompanied by formation of monoclinic zirconia, irregular shape crystals of YVO4, CeVO4 and semi-cubic crystals of CeO2 as hot corrosion products, caused the degradation of CSZ coating in usual CSZ and CSZ/Micro Al2O3 coating.  相似文献   

11.
Composite coatings Ni/Al2O3 were electrochemically deposited from a Watts bath. Al2O3 powder with particle diameter below 1 μm was codeposited with the metal. The obtained Ni/Al2O3 coatings contained 5-6% by weight of corundum. The structure of the coatings was examined by scanning electron microscopy (SEM). It has been found that the codeposition of Al2O3 particles with nickel disturbs the nickel coating's regular surface structure, increasing its microcrystallinity and surface roughness. DC and AC electrochemical tests were carried out on such coatings in a 0.5 M solution of Na2SO4 in order to evaluate their corrosion resistance. The potentiodynamic tests showed that the corrosion resistance of composite coating Ni/Al2O3 is better than that of the standard nickel coating. After 14 days of exposure the nickel coating corrodes three times faster than the Ni/Al2O3 coating. The electrochemical behaviour of the coatings in the corrosive solution was investigated by electrochemical impedance spectroscopy (EIS). An equivalent circuit diagram consisting of two RC electric circuits: one for electrode, nickel corrosion processes and the other for processes causing coating surface blockage, were adopted for the analysis of the impedance spectra. The changes in the charge transfer resistance determined from the impedance measurements are comparable with the changes in corrosion resistance determined from potentiodynamic measurements.  相似文献   

12.
The fine grains of Al2O3-Cr2O3/Cr-carbide nanocomposites were prepared by employing recently developed spark plasma sintering (SPS) technique. The initial materials were fabricated by a metal organic chemical vapor deposition (MOCVD) process, in which Cr(CO)6 was used as a precursor and Al2O3 powders as matrix in a spouted chamber. The basic mechanical properties like hardness, fracture strength and toughness, and the nanoindentation characterization of nanocomposites such as Elastics modulus (E), elastic work (We) and plastic work (Wp) were analyzed. The microstructure of dislocation, transgranular and step-wise fracture surface were observed in the nanocomposites. The nanocomposites show fracture toughness of (4.8 MPa m1/2) and facture strength (780 MPa), which is higher than monolithic alumina. The strengthening mechanism from the secondary phase and solid solution are also discussed in the present work. Nanoindentation characterization further illustrates the strengthening of nanocomposites.  相似文献   

13.
The surface of Cr2O3 nanoparticles was modified with various amounts of 3-amino propyl trimethoxy silane (APTMS). Thermal gravimetric analysis (TGA), turbidimeter and Fourier transform infrared (FTIR) spectroscopy were utilized in order to investigate APTMS grafting on the nanoparticles. Then, polyurethane nanocomposites were prepared using various loadings of silane modified Cr2O3 nanoparticles. The nanoparticles dispersion in the coating matrix was studied by a field emission scanning electron microscopy (FESEM). Dynamic mechanical thermal analysis (DMTA) and tensile test were utilized in order to investigate the mechanical properties of the nanocomposites. Results obtained from FTIR, TGA and turbidimeter measurements revealed that the organic functional groups of the silane were successfully grafted on the surface of the nanoparticles. The mechanical properties of the polyurethane were significantly enhanced using 2 wt% Cr2O3 nanoparticles modified with 0.43 g silane/5 g pigment compared with other samples.  相似文献   

14.
Aimed at the problem of tubing corrosion in environment that containing hydrogen sulfide (H2S), carbon dioxide (CO2), and chlorides (Cl), the corrosion behaviour of two nickel based alloys (UNS 06985 and UNS 08825) in 15 wt%NaCl solution containing H2S/CO2 in high temperature and high pressure environment was investigated. The pitting corrosion behaviour of Ni-based alloys was studied in FeCl3·6H2O solution by means of polarisation curve and immersion tests. The scanning electron microscopy (SEM), energy disperse spectroscopy (EDS) was applied to analyse the microstructure and corrosion performance of the samples. The results showed that the pitting-resistant of nickel alloy UNS 06985 was superior to UNS 08825. With the rising of experimental temperature, the corrosion increased and some slight pitting attacks appeared on the surface of UNS 08825. The test temperature was the crucial factor that influenced not only the compactness and the growing rate of corrosion product scale, but also the corrosion rate of the alloys. Elemental sulfur is a strong oxidant, the presence of S0 leads to a serious localized corrosion. XRD showed that the corrosion films formed on nickel base alloys consisted of NiS, CrO3, and the oxides of Ni and Fe. The polarisation curves showed a different corrosion behaviour of two alloys, anodic curve of UNS 06985 has a wider passivation area, and there has higher transpassive potential.  相似文献   

15.
In this study, substrates of Inconel 738 LC superalloy coupons were first sprayed with a NiCoCrAlY bondcoat and then with a ceria and yttria stabilized zirconia (CYSZ; ZrO2−25 wt%CeO2−2.5 wt%Y2O3) topcoat by air plasma spraying (APS). Hot corrosion studies of plasma sprayed thermal barrier coatings (TBCs) were conducted in 45 wt%Na2SO4+55 wt%V2O5 molten salt at 1000 °C for 30 h. The results showed that the coating defects, such as pores and microcracks play important roles as effective paths for the salt penetration in hot corrosion. Based on the results, the reaction between molten salt and stabilizers of zirconia (Y2O3 and CeO2), the formation of YVO4, CeVO4 and CeO2 crystals, the detrimental phase transformation of zirconia from tetragonal to monoclinic due to the depletion of stabilizers and finally, the creation of stresses were recognized to be in the degradation mechanism of CYSZ ceramic coatings in the presence of molten sulfate–vanadate salt.  相似文献   

16.
Lithium transport through LiMn2O4 film electrode was investigated in aqueous saturated LiNO3 solution by analyses of the potentiostatic current transient and ac-impedance spectra. It was found that the current transient hardly shows the Cottrell behaviour, and the initial current is linearly proportional to the potential step. This strongly suggests that lithium transport through the film electrode proceeds in aqueous LiNO3 solution by the same mechanism involving the cell-impedance-controlled constraint, as does lithium transport in non-aqueous organic solution such as LiClO4 in propylene carbonate (PC). However, the cell-impedance in aqueous LiNO3 solution was determined to be much smaller by more than one order in value than that cell-impedance in non-aqueous LiClO4-PC solution over the whole potential range, indicating lithium transport is markedly enhanced in aqueous electrolyte. From the comparison between the ac-impedance spectra obtained in aqueous and non-aqueous electrolytes, the reduced cell-impedance in aqueous electrolyte can be accounted for by the kinetic facility for the interfacial charge-transfer reaction in the absence of the resistive surface film as well as by the high conductivity of the electrolyte itself.  相似文献   

17.
Gas tunnel type plasma sprayed free-standing La2Zr2O7 coating specimens with a thickness of 300-400 μm were prepared under optimized operating conditions and were subjected to hot corrosion test in the presence of corrosive impurities such as V2O5, Na2SO4, and Na2SO4 + V2O5 mixtures (60:40 wt%) at two different temperatures for duration of 5 h, i.e. 1000 and 1350 K for V2O5 and Na2SO4 + V2O5 mixtures, 1200 and 1350 K for Na2SO4. For temperatures at 1350 K, the reaction mechanism of V2O5 and the mixture of Na2SO4 + V2O5 are similar and LaVO4 is formed as the corrosive product, which leads to massive phase transformation from pyrochlore to tetragonal and monoclinic phases. Microstructural observations from planar reaction zone (PRZ) and melt infiltrated reaction zone (MIRZ) reveals that the present La2Zr2O7 coating exhibits good hot corrosion resistance in V2O5 environment and moderate for the mixture of Na2SO4 + V2O5, but is worst in Na2SO4 environment.  相似文献   

18.
In order to improve corrosion resistance of the stainless steel structures exposed to acidic media, a variety of corrosion inhibitors particularly organic ones have been examined. In this work, the corrosion inhibition performance of two azole derivatives namely benzotriazole and benzothiazole on stainless steel in 1 M sulfuric acid was studied through taking advantage of electrochemical techniques as well as SEM surface analysis. Revealing effectiveness of the two inhibitors, the AC impedance spectra indicated no change in corrosion mechanism. The noise resistance and average current density as parameters extracted from electrochemical noise measurements revealed the direct proportion of inhibition function to the inhibitor concentration. In accordance with the polarization curves, benzotriazole and benzothiazole appeared to act as mixed type inhibitors. The adsorption of the two corrosion inhibitors was shown to obey Langmuir isotherm. Moreover, it was deduced from the isotherm that the type of adsorption can be physical and chemical in nature. The corrosion damage mitigation was also confirmed through SEM in the presence of benzothiazole.  相似文献   

19.
20.
In this study, Li3V2(PO4)3/carbon samples were synthesized by two different synthesis routes. Their influence on chemical and electrochemical performances of Li3V2(PO4)3/carbon as cathode materials for lithium-ion batteries was investigated. The structure and morphology of Li3V2(PO4)3/carbon were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM) measurements. TEM revealed that the Li3V2(PO4)3 grains synthesized through the sol-gel route had a depressed grain size. Electrochemical behaviors were characterized by galvanostatic charge/discharge, cyclic voltammetry and AC impedance measurements. Li3V2(PO4)3/carbon with smaller grain size showed better performances in terms of the discharge capacity and cycle stability. The improved electrochemical properties of the Li3V2(PO4)3/carbon were attributed to the depressed grain size and enhanced electrical contacts produced via the sol-gel route. AC impedance measurements also showed that the sol-gel route significantly decreased the charge-transfer resistance and shortened the migration distance of lithium ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号