首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ismail Koyuncu 《Desalination》2002,143(3):243-253
In this study, DS5 DK type nanofiltration membranes were tested to recycle the reactive dye bath effluents. Reactive black 5 (RB5), reactive orange 16 (RO16), reactive blue 19 (RB19) and NaCl were used in the experiments to prepare the synthetic dye and salt mixtures. Effects of feed concentration, pressure and cross flow velocity on the permeate flux and color removal were investigated. Permeate flux increased with increasing pressure for all NaCl solutions. Dye concentration had a significant effect on flux values. Under the fixed NaCl concentrations the flux decreased with increasing dye concentrations. Dye rejections greater than 99% were achieved. Permeate was almost colorless. A gel layer formed by the rejected dye on membrane surface operates as a resistance to the permeation of dyes due to complete rejection of high molecule weight dyes, especially for the low salt concentrations. The presence of salt concentration has an interesting effect on color removal. Color removal decreased with increasing salt concentration. Cross flow velocities had also a significant effect on flux values. The dye formed agglomerates at high NaCl concentrations. High cross flow velocities decreased this effect.  相似文献   

2.
Commercial 50 and 100 kD polyethersulfone (PES) and polysulfone (PS) ultrafiltration membranes were surface modified by UV photografting of poly(ethylene glycol) methacrylate (PEGMA) monomer. The modified membranes were characterized by the degree of grafting, water flux and molecular weight cutoff (MWCO) rating. The flux and fouling of the modified and unmodified membranes were examined with sugarcane juice and its polysaccharide fraction. Under the conditions of this study, the modified membranes displayed a low degree of grafting (26-36 μg/cm2), which was independent of the UV exposure duration; however, both membrane water flux and MWCO rating were affected by the irradiation time. In the best case, the modified membranes exhibited lower fouling with sugarcane juice; furthermore, the propensity to foul also decreased. More significantly, juice flux recovery was almost complete for successive UF-cleaning cycles.  相似文献   

3.
Ani Idris  Iqbal Ahmed 《Desalination》2009,249(2):541-2283
The objective of this research is to evaluate the performance of the polyethersulfone (PES) hollow fiber ultrafiltration membranes spun from LiBr doped solutions prepared using the newly developed microwave heating technique. In addition the resultant hollow fiber membranes were introduced to a new post-treatment method where the membranes were placed in water and irradiated using the microwave technique. Various concentrations of the additive, LiBr, (1-4 wt.%) were added into the PES dope solutions. The dissolution of PES and LiBr in DMF was facilitated by the microwave heating technique. The performance of the membranes was evaluated in terms of pure water permeation and polyethylene glycol separation and its molecular weight cutoff (MWCO) was determined. The results revealed that the microwave post-treatment technique was proven to be effective in producing higher performance membranes. The best performance was obtained at 3% LiBr with MWCO at 90% rejection in the range of 2.83 kDa and high flux range of 222.18 (Lm− 2 h− 1 bar− 1). LiBr interacts in the membrane matrix resulting in the enhancement of the hydrophilic property of the membrane and this is confirmed by the contact angle measurement.  相似文献   

4.
Nanofiltration of textile wastewater for water reuse   总被引:3,自引:0,他引:3  
The textile industry produces a large amount of wastewater that is highly coloured with high loading of inorganic salt. Crossflow nanofiltration using thin film composite polysulfone membrane was used to recover the electrolyte solution and reject the colour. Using a synthetic textile effluent of reactive dye and NaCl solution, the study focused on the mechanism controlling flux and rejection by varying four main parameter; crossflow velocity, initial dye concentration, feed pressure, and electrolyte concentration. Results show that flux was dominated by the osmotic pressure created from the presence of NaCl, and that dye concentration did not significantly effect the flux or rejection. Working at low pressures of up to 500 kPa, relatively high fluxes were obtained, with an average dye rejection of 98% and NaCl rejections of less than 14%. Thus, a high quality of reuse water could be recovered. Even after a number of cycles, the membrane did not foul irreversibly, with an overall mean waterflux recovery of 99%.  相似文献   

5.
6.
Loose nanofiltration membrane emerges as required recently, since it is hard for conventional nanofiltration membrane to fractionate mixture of dyes and salts in textile wastewater treatment. However, the polymeric membranes unavoidably suffer from membrane fouling, which was caused by the adsorption of organic pollutants (like dyes). Normally, the dye fouling layer will shrink membrane pore size, thus resulting in flux decline and rejection increase. It is thought that membrane fouling may be a double-edged sword and can be an advantage if properly utilized. Thereby, loose nanofiltration membranes were constructed here by a green yet effective method to fractionate dyes/salt mixture by taking advantage of membrane fouling without using poisonous ingredients. A commercially available polyacrylonitrile (PAN) ultrafiltration membrane with high permeability was chosen as the substrate, and dyes were used to contaminate PAN substrate and formed a stable barrier layer when adsorption of dyes reached dynamic equilibrium. The resultant PAN-direct red 80 (DR80) composite membranes displayed superior permeability (~128.4 L m−2 h−1) and high rejection (~99.9%) to DR80 solutions at 0.4 MPa. Moreover, PAN-DR80 membranes allowed fast fractionation of dyes/sodium chloride (NaCl) mixture, which maintained a negligible dye loss and a low NaCl rejection (~12.4%) with high flux of 113.6 L m−2 h−1 at 0.4 MPa. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47438.  相似文献   

7.
In this paper, the effects of γ-butyrolactone (GBL) weight ratio (wGBL) and membrane thickness on the formation of asymmetric flat sheet membranes prepared with P84 (BTDA-TDI/MDI co-polyimide)/N-methyl-2-pyrrolidone (NMP)/GBL casting solutions are investigated. With the increase of membrane thickness, the transition of membrane morphology from sponge-like to finger-like structure occurs at critical structure-transition thickness Lc. Lc and the general sponge-like structure thickness (Lgs) increase with wGBL. For 20 wt.% P84/NMP/GBL casting solution, the membrane morphology changes from finger-like to sponge-like structure at the critical weight ratio of GBL (w? = 0.69). The membrane morphology and performance of hollow fibers spun with various wGBL are observed. Compared with the hollow fiber membranes made of 18 wt.% P84/NMP/GBL dope solution with wGBL = 0.75, the hollow fiber membranes spun with wGBL = 0.25 present a higher permeation flux and a larger MWCO. As wGBL increases from 0.25 to 0.75, the membrane morphology transfers from finger-like to sponge-like structure. An increase in shear rate shifts the rejection curves towards left, and lowers the MWCO of hollow fiber membranes. For hollow fiber membranes spun with wGBL = 0.75, a relatively high permeation flux and a large MWCO are obtained by the wet spinning process.  相似文献   

8.
J. Lowe  Md.M. Hossain 《Desalination》2008,218(1-3):343-354
Humic acids are primarily a result of the microbiological degradation of surrounding vegetation and animal decay and enter surface waters through rain water run-off from the surrounding land. This often gives rise to large seasonal variations, high concentrations in the wet season and lower concentrations in the dry season. Alone humic acid is just a colour problem but when present in conventional treatment processes like chlorination, carcinogenic by-products like trihalomethane and haloacetic acid are formed. This, in addition to the demand for clean potable drinking water, has sparked extensive research into alternative processes for the production of drinking water from various natural/industrial sources. One of the major areas of focus in these studies is the use of membranes in microfiltration, ultrafiltration and nanofiltration. In this report the humic acid removal efficiency of ultrafiltration membranes with 3 kDa, 5 kDa and 10 kDa MWCO is examined. The membranes were made of regenerated cellulose and were in the form of cassette providing a 0.1 m2 surface area. At first distilled and deionised water, known as milliQ water, was used as the background feed solution to which humic acid powder was added. It was found that all three membranes removed humic acid with an efficiency of approx. 90% and were capable of reducing initial concentrations of 15mg/L to below the New Zealand regulatory limit of 1.17 mg/L. The permeate flux at a transmembrane pressure of 2.1 bar was approx. 20 l/m2/h (LMH) and 40 LMH, respectively through the membranes with MWCO 3 kDa and 5 kDa. These membranes experienced significant surface fouling resulting in retentate flow rates as low as 11 litres per hour after just four runs compared to the recommended 60–90 l/h. Cleaning with 0.1 M NaOH slightly improved the retentate flow rate, but well below those obtained with fresh membranes. The 10 kDa membrane provided high retentate flow rates which evidently minimised fouling by providing a good sweeping action across the membrane surface while maintaining humic acid removal below the regulatory 1.17 mg/L level. The permeate flux through this membrane was initially high (140–180 LMH) and reduced to approx. 100 LMH after 10–12 min of operation. Increasing the initial humic acid feed concentration from 10 mg/L to 50 mg/L did not significantly decrease humic acid removal efficiency although the retentate flow rate was lower at higher concentrations. Finally the tap water was tested as the background solution and treated for the removal of humic acid. The presence of ions and other impurities in the tap water had little effect on humic acid removal. However, the permeate flux through 10 kDa membrane decreased from 100 LMH for milliQ water to 60 LMH for tap water after 20 min of operation.  相似文献   

9.
Membrane technology has a growing role in downstream processing of biopharmaceuticals showing greater performances than the traditional processes. Concerning the use of membrane technology for the isolation of clavulanic acid from fermentation broths, the major drawback is the severe flux decline observed during concentration by nanofiltration (NF) of the clarified broth. This work addresses the study of the NF, aiming the achievement of high fluxes and high clavulanic acid rejections. A suitable NF membrane is chosen and the main causes of flux decline are searched.The tested membranes (NFT50, Desal DL and Desal DK) were characterized, evidencing significant differences concerning their molecular weight cut-off (MWCO), hydraulic permeability, roughness (atomic force microscopy measurements) and rejection to clavulanic acid. However, for high volumetric concentrations of clarified broth, their fluxes were identical. Taking into account the average permeation fluxes and clavulanic acid retention, the membrane Desal DK was considered the most appropriate for carrying the clavulanic acid concentration.Throughout experiments with model solutions of increasing complexity, glucose and clavulanic acid were identified as the major contributors to flux decline due to concentration polarization together with enhanced osmotic pressures. Considering these mechanisms, a simplified approach was used aiming the modelling of the observed flux decline of both model and real solutions.  相似文献   

10.
Two ultrafiltration membranes with different geometries (spiral polymeric and tubular ceramic) but similar cutoffs were used to treat wastewater from a food industry. Hydrodynamic conditions were optimized by statistical methods as a strategy to get more accurate values of the critical parameters and then to produce higher water flux and minimization of membrane fouling. The validation of the optimization method was obtained by experimental critical flux determination at critical parameters. Membrane fluxes revealed significant differences during filtration. The polymeric membrane showed an optimal flux of 45.60 Lh?1 m?2 at 3.21 bar while operating at a stable time of 11.61 h, whereas optimal flux of the ceramic membrane was 32.43 Lh?1 m?2 at 3.98 bar for 16.03 h. Experimental critical flux values were only slightly lower than optimal fluxes for both membranes, showing the validity of the statistics models applied. Negligible osmotic pressure was found on the two membranes at critical flux parameters, indicating irreversible fouling for both cases. The polymeric membrane revealed strong fouling behavior and the ceramic membrane showed a weak form; the flux decline occurred first in the polymeric membrane, whereas the ceramic membrane exhibited high stability during the filtration operations. A high degree of purification of wastewater was obtained by this membrane at critical flux conditions.  相似文献   

11.
Herein, adsorptive polyethersulfone/polylactic acid (PES/PLA) blends membranes with systematic concentrations of cellulose nanofibers (CNFs) (0.5–2.5 wt%) were developed via a modified phase inversion process for the enhanced removal of cationic methylene blue (MB) dye. To the best of our knowledge, this is the first time that such adsorptive membranes have been produced for potential use in wastewater treatment. The fabricated membranes were characterized for surface and cross-sectional morphology (scanning electron microscope), surface roughness (atomic force microscope), functionality (Fourier-transform infrared spectroscopy), thermal stability (thermal gravimetric analysis), wettability (contact angle measurements), antifouling behavior (flux recovery studies), and dye adsorption and reusability (adsorption and desorption tests). CNF incorporated membranes showed improved wetting properties, with contact angle decreasing from 76° in the pristine membranes to 48° in 2.5 wt% PES/PLA membranes. The membrane bulk porosity increased from 60.3% to 79.23%, while the pure water flux increased from 210.8 to 399.12 Lm−2 h−1. At optimal conditions, CNF-modified membranes removed >98% of MB compared with 8% removal by the pristine membranes. After five cycles of adsorption and desorption, the membrane with 2 wt% CNFs achieved over 70% dye removal showing excellent reusability properties. Adsorption followed pseudo-second-order and Freundlich models. The adsorption was attributed to electrostatic interactions between the negatively charged membrane surfaces and the positively charged dye molecules as well as through hydrogen bonding. Therefore, this work revealed that CNF-modified PES/PLA membranes can be used as adsorbents for the enhanced removal of organic pollutants in water treatment applications.  相似文献   

12.
Thin polyvinyl alcohol (PVA) layers loaded with fumed silica were coated on porous ceramic supports. Scanning electron microscope (SEM) was used to characterize the ceramic-supported thin PVA active layers and the effects of coating gel PVA concentration on thickness and density of the active layers were investigated. Pervaporation (PV) dehydration of 90 wt.% ethanol was performed at temperatures of 30, 45 and 60 °C. The values of water flux (0.05–2.92 kg/m2 h) and selectivity (3–180) exceed typical values obtained for pure PVA membranes. Besides the pervaporation separation index (PSI) varies from 5.84 to 82.81. Compared to pure PVA membrane with maximum PSI of 47.2, the pervaporation performance was significantly improved. The best separation performance was obtained using the membrane prepared from 5 wt.% PVA solution containing 6 wt.% fumed silica and at pervaporation temperature of 45 °C with permeation flux of 1.69 kg/m2 h, and selectivity of 50. The highest permeation flux, selectivity and PSI was 2.92 kg/m2 h, 180 and 82.81, obtained at 60, 30 and 45 °C, respectively, while using membranes loaded with 8, zero and 6 wt.% of fumed silica in PVA membrane prepared from 5, 10 and 5 wt.% PVA solutions, respectively. The novel ceramic support increased mechanical strength of the membrane and protected the ultrathin polymeric top active layer under aggressive operating conditions, especially high pressure gradient across the membrane. Incorporation of fumed silica also resulted in higher water permeation flux. Due to these results, the synthesized membranes are suitable for ethanol purification in industrial scales.  相似文献   

13.
A small molecular-weight cut-off (MWCO) of 6000 Da poly(m-phenylene isophthalamide) (PMIA) embedded zinc oxide (ZnO) hybrid ultrafiltration (UF) membrane was synthesized via nonsolvent-induced phase separation (NIPS). Tests of field emission scanning electron microscope (FE-SEM), energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), thermal gravimetric analyzer (TGA), Fourier transform infrared (FTIR), capillary flow porometer (CPF), mechanical test, and pure water flux (PWF) for characterization of membranes were carried out. The EDX, FTIR, and TGA indicated the presence of ZnO in the polymer matrix. The hybrid membranes showed enhanced pore density, PWF by the presence of the particles. The contact angle and water flux of modified membrane with 0.03 wt % of nano-ZnO were 47.7° and 52.58 L·m−2·h−1 compared to 71.6° and 36.27 L·m−2·h−1 respectively; Compared with the hydrophobic membrane, the PMIA membrane, with hydrophilicity, is supposed to exhibit good antifouling properties. Furthermore, the thermal stability and mechanical properties of the modified membranes were increased. Finally, the hybrid membrane was used in treating papermaking white wastewater and exhibited good separation and high water flux. The great properties of the ultrafiltration PMIA membranes indicate their potential for excellent performance in industrial applications. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47583.  相似文献   

14.
Susheelkumar G. Adoor 《Polymer》2007,48(18):5417-5430
Mixed matrix membranes of sodium alginate (NaAlg) and poly(vinyl alcohol) (PVA) containing 5 and 10 wt.% silicalite-1 particles were fabricated by solution casting method and the cured membranes were crosslinked with glutaraldehyde. These membranes were used in pervaporation (PV) dehydration of isopropanol at 30, 40, 50 and 60 °C. Membrane morphology was studied by scanning electron microscopy and universal testing machine to assess their mechanical strengths. Swelling results of the pristine and mixed matrix membranes were correlated with their PV performances. Selectivities of the mixed matrix membranes of NaAlg were 11,241 and 17,991 with the fluxes of 0.039 and 0.027 kg/m2 h, respectively, for 5 and 10 wt.% silicalite-1 loadings. Corresponding values for mixed matrix membranes of PVA were 1295 and 2241, and 0.084 and 0.069 kg/m2 h, respectively, for 10 wt.% water-containing feed at 30 °C. Pristine membranes of NaAlg and PVA exhibited lower selectivities of 653 and 77 with increased fluxes of 0.067 and 0.095 kg/m2 h, respectively. From the temperature dependence of flux and diffusivity data with 10 wt.% water-containing feed, Arrhenius plots were constructed to compute heat of sorption, ΔHs values. Mixed matrix membranes of NaAlg were better than PVA mixed matrix membranes at all compositions (10-40 wt.%) of water. Molecular dynamics (MD) simulation was employed to compute the interfacial interaction energies of NaAlg and PVA polymers with silicalite-1 filler; also sorption of liquid molecules was computed. Simulated diffusivities compared well with the experimental data. Thermodynamic treatment of sorption, diffusion and permeation processes was attempted based on the Flory-Huggins theory to explain the PV performances of the membranes.  相似文献   

15.
Four broad types of membranes are categorised: organic polymers generally, crosslinked poly(vinyl alcohol), organic-inorganic hybrids and charged polymers. The best performers in terms of flux, which reaches a maximum of 5 kg/m2h, are anionic or cationic polymers, including polysalts. Polyanion and polysalt membranes are superior. Two examples are thin layers of the active polysalt membrane on a supporting membrane. The best combination for flux and selectivity is a polyethyleneimine/poly (acrylic acid) polysalt deposited on a reverse osmosis membrane, at 4 kg/m2h and 1075 respectively. It is noticeable that hybrid poly(vinyl alcohol)/inorganic membranes do not show enhanced fluxes. Very high separation factors were observed, covering a range of polymers, of neutral, anionic or cationic character. The top results (>10,000) were for charged membranes, either cationic or anionic, but not polysalts. The fluxes encountered here were miniscule, the best being caesium alginate at about 1 kg/m2h. The ideal structure for high fluxes would appear to be one containing discrete domains of oppositely charged species of optimal size. Fresh approaches are being actively studied, such as layer-by-layer deposition of oppositely charged polyelectrolytes, with due attention to appropriate separation of the sites of opposite character.  相似文献   

16.
《分离科学与技术》2012,47(9):1493-1511
Abstract

Wastewater containing about 0.5% oil and grease (O/G) from a metal industry was treated by tubular ultrafiltration using membranes having a molecular weight cutoff (MWCO) of 120,000 and a negative surface charge (P membrane) and of 100,000 and no surface charge (M membrane). Permeate flux decreased dramatically during the first several hours of operation and then leveled-off for the remainder of semibatch operation. The average P membrane flux was significantly higher than the M membrane (38 versus 27 gal/ft 2.d) because of its higher MWCO and negative surface charge. Increasing the transmembrane pressure and crosstlow velocity increased the permeate flux for both membranes. O/G concentrations less than 50 mg/L and total suspended solids (TSS) levels less than 25 mg/L were common for both membranes. O/G removal efficiencies (rejections) averaged 98% for the M membrane and 97% for the P membrane. TSS rejections were approximately 97% for both membranes. Effluent O/G concentration and turbidity from the P membrane were slightly higher than the M membrane because of the P membrane's higher MWCO and the larger flux. The average volume reduction and residual production were 97% and 32 gal/1000 gal. respectively. Acid cracking of the concentrate with sulfuric acid was marginally successful.  相似文献   

17.
In this study, polysulfone (PSF) hollow fiber membranes with enhanced performance for humic acid removal were prepared from a dope solution containing PSF/DMAc/PVP/TiO2. The main reason for adding titanium oxide during dope solution preparation was to enhance the antifouling properties of membranes prepared. In the spinning process, air gap distance was varied in order to produce different properties of the hollow fiber membranes. Characterizations were conducted to determine membrane properties such as pure water flux, molecular weight cut off (MWCO), humic acid (HA) rejection and resistance to fouling tendency. The results indicated that the pure water flux and MWCO of membranes increased with an increase in air gap distance while HA retention decreased significantly with increasing air gap. Due to this, it is found that the PSF/TiO2 membrane spun at zero air gap was the best amongst the membranes produced and demonstrated > 90% HA rejection. Analytical results from FESEM and AFM also provided supporting evidence to the experimental results obtained. Based on the anti-fouling performance investigation, it was found that membranes with the addition of TiO2 were excellent in mitigating fouling particularly in reducing the fouling resistances due to concentration polarization, cake layer formation and absorption.  相似文献   

18.
研究了分置式膜-生物反应器(RMBR)处理生活污水的工艺条件,讨论了膜面流速、添加粉末活性炭(PAC)等因素对临界膜通量、CODCr脱除率的影响。结果表明:在进水水质CODCr为286~596mg/L,NH3-N为14~50mg/L时,RMBR的出水水质达到CODCr<17mg/L(脱除率>97%),NH3-N<1.6mg/L(平均去除率>81%),浊度<0.2NTU;添加PAC后出水水质CODCr<3.88mg/L,临界循环比降低了10%~20%;对于已污染的膜,水反冲洗、碱浸泡后水反冲洗、碱浸泡+酸浸泡后水反冲洗可使膜通量恢复至新膜的39%,78%,91%。  相似文献   

19.
Effort has been made to investigate the concentration of titanium white waste acid (TWWA) by direct contact membrane distillation (DCMD) and the focus is the influence of polyacrylamide (PAM) on membrane wetting and fouling. It was found that the presence of PAM in feed reduced membrane flux and retarded wetting development, even though its level in feed of H2SO4 solution was only 0.0002 wt%. The difference between the tests using pure water and neat PAM aqueous solution, respectively, as feed also indicated the above effect registered with PAM. AFM results showed that the addition of PAM in feed solution changed the membrane shell surface morphology. However, conclusive proof of the PAM existence in membrane cross-section and inner surface was not obtained, probably due to its low concentration in feed solution. Two approaches were tried to recover membrane flux. In comparison with operation w/o any treatment, HCl solution rinsing did not lead to obvious improvement in membrane flux recovery, while rinsing combined with gas purge has clearly delayed the degradation in acid concentration factor. Nevertheless, even the latter could not ensure long term stability. High tortuosity and low hydrophobicity of the membranes used were suggested as underlying causes and should be addressed in the future.  相似文献   

20.
Novel hollow fibre polysulphone (PSF) separation membranes were prepared via the incorporation of carboxylated graphene oxide (cGO) in membrane matrix during the dry‐wet spinning process to improve the membrane performance of water flux and dye adsorption. The surface composition and morphology of the prepared cGO‐incorporated hollow fibre membranes were characterised by means of Fourier Transform–infrared spectra and scanning electron microscopy. The effects of different cGO contents on membrane surface hydrophilicity, separation performance, anti‐compaction and adsorption properties were investigated through measurements of the water contact angle, cross‐flow filtration and methylene blue (MB) adsorption experiments. The results demonstrated that the cGO‐incorporated membranes had more hydrophilic surfaces, higher permeation flux, better anti‐compaction properties and a higher adsorption rate of MB than that of the PSF control membrane. When cGO content was 0.45 wt.%, the pure water flux of the modified membrane increased from 90.56 to 148.26 l m?2 h?1 at 0.1 MPa; also, rejections of bovine serum albumin and polyethylene glycol (PEG‐20000) maintained relatively high values of 98.81 and 93.89%, respectively. The incorporation of cGO nanosheets could effectively improve membrane anti‐compaction properties and the adsorption rate of MB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号