首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Unequal error protection (UEP) codes find applications in broadcast channels, as well as in other digital communication systems, where messages have different degrees of importance. Binary linear UEP (LUEP) codes combined with a Gray mapped QPSK signal set are used to obtain new efficient QPSK block-modulation codes for unequal error protection. Several examples of QPSK modulation codes that have the same minimum squared Euclidean distance as the best QPSK modulation codes, of the same rate and length, are given. In the new constructions of QPSK block-modulation codes, even-length binary LUEP codes are used. Good even-length binary LUEP codes are obtained when shorter binary linear codes are combined using either the well-known |u¯|u¯+v¯|-construction or the so-called construction X. Both constructions have the advantage of resulting in optimal or near-optimal binary LUEP codes of short to moderate lengths, using very simple linear codes, and may be used as constituent codes in the new constructions. LUEP codes lend themselves quite naturally to multistage decoding up to their minimum distance, using the decoding of component subcodes. A new suboptimal two-stage soft-decision decoding of LUEP codes is presented and its application to QPSK block-modulation codes for UEP illustrated  相似文献   

2.
This paper considers block-coded 8-phase-shift-keying (PSK) modulations for the unequal error protection (UEP) of information transmitted over Rayleigh-fading channels. Both conventional linear block codes and linear UEP (LUEP) codes are combined with a naturally labeled 8-PSK signal set, using the multilevel construction of Imai and Hirakawa (1977). Computer simulation results are presented showing that, over Rayleigh-fading channels, it is possible to improve the coding gain for the most significant bits with the use of binary LUEP codes as constituent codes, in comparison with using conventional binary linear codes alone  相似文献   

3.
The unequal error correction capabilities of binary cyclic codes of composite length are investigated. Under certain conditions, direct sums of concatenated codes have unequal error correction capabilities. By a modified Hartmann and Tzeng (1973) algorithm, it is shown that a binary cyclic code of composite length is equivalent to the direct sum of concatenated codes. With this, some binary cyclic unequal error protection (UEP) codes are constructed. Finally, the authors present a class of two-level UEP cyclic direct-sum codes which provide error correction capabilities higher than those guaranteed by the Blokh-Zyablov (1974) constructions  相似文献   

4.
In this paper, convolutional codes are studied for unequal error protection (UEP) from an algebraic theoretical viewpoint. We first show that for every convolutional code there exists at least one optimal generator matrix with respect to UEP. The UEP optimality of convolutional encoders is then combined with several algebraic properties, e.g., systematic, basic, canonical, and minimal, to establish the fundamentals of convolutional codes for UEP. In addition, a generic lower bound on the length of a UEP convolutional code is proposed. Good UEP codes with their lengths equal to the derived lower bound are obtained by computer search.  相似文献   

5.
New results on self-orthogonal unequal error protection codes   总被引:1,自引:0,他引:1  
A lower bound on the length of binary self-orthogonal unequal error protection (UEP) codes is derived, and two design procedures for constructing optimal self-orthogonal UEP codes are proposed. With this lower bound, known self-orthogonal UEP codes can be evaluated. It is pointed out that, for given values of minimum distance and code rate, the self-orthogonal codes must be relatively long, so optimal self-orthogonal codes are not optimal in general. But self-orthogonal codes can be implemented simply, and they have error-correcting capabilities beyond those guaranteed by their minimum distance. These properties can be viewed as a partial compensation for using self-orthogonal codes  相似文献   

6.
The common practice for achieving unequal error protection (UEP) in scalable multimedia communication systems is to design rate-compatible punctured channel codes before computing the UEP rate assignments. This paper proposes a new approach to designing powerful irregular repeat accumulate (IRA) codes that are optimized for the multimedia source and to exploiting the inherent irregularity in IRA codes for UEP. Using the end-to-end distortion due to the first error bit in channel decoding as the cost function, which is readily given by the operational distortion-rate function of embedded source codes, we incorporate this cost function into the channel code design process via density evolution and obtain IRA codes that minimize the average cost function instead of the usual probability of error. Because the resulting IRA codes have inherent UEP capabilities due to irregularity, the new IRA code design effectively integrates channel code optimization and UEP rate assignments, resulting in source-optimized channel coding or joint source-channel coding. We simulate our source-optimized IRA codes for transporting SPIHT-coded images over a binary symmetric channel with crossover probability p. When p = 0.03 and the channel code length is long (e.g., with one codeword for the whole 512 x 512 image), we are able to operate at only 9.38% away from the channel capacity with code length 132380 bits, achieving the best published results in terms of average peak signal-to-noise ratio (PSNR). Compared to conventional IRA code design (that minimizes the probability of error) with the same code rate, the performance gain in average PSNR from using our proposed source-optimized IRA code design is 0.8759 dB when p = 0.1 and the code length is 12800 bits. As predicted by Shannon's separation principle, we observe that this performance gain diminishes as the code length increases.  相似文献   

7.
Several authors have addressed the problem of designing good linear unequal error protection (LUEP) codes. However, very little is known about good nonbinary LUEP codes. The authors present a class of optimal nonbinary LUEP codes for two different sets of messages. By combining t-error-correcting Reed-Solomon (RS) codes and shortened nonbinary Hamming codes, they obtain nonbinary LUEP codes that protect one set of messages against any t or fewer symbol errors and the remaining set of messages against any single symbol error. For t⩾2, they show that these codes are optimal in the sense of achieving the Hamming lower bound on the number of redundant symbols of a nonbinary LUEP code with the same parameters  相似文献   

8.
Presents a class of binary primitive BCH codes that have unequal-error-protection (UEP) capabilities. The authors use a previous result on the span of their minimum weight vectors to show that binary primitive BCH codes, containing second-order punctured Reed-Muller (RM) codes of the same minimum distance, are binary-cyclic UEP codes. The values of the error correction levels for this class of binary LUEP codes are estimated  相似文献   

9.
We introduce a new family of unequal error protection (UEP) codes, based on low-density parity-check (LDPC) component codes and Plotkin-type constructions. The codes are decoded iteratively in multiple stages, and the order of decoding determines the level of error protection. The level of UEP among the code bits is also influenced by the choice of the LDPC component codes and by some new reliability features incorporated into the decoding process. The proposed scheme offers a very good tradeoff between code performance on one side and encoding/decoding and storage complexity on the other side. The novel approach to UEP also allows for finding simple approximations for the achievable degrees of UEP, which can be used to govern practical code design implementations.  相似文献   

10.
The modified Plotkin bound for unequal error protection (UEP) codes is derived. Based on the separation vector of UEP codes, the authors adopt the average separation of all information digits of a given UEP code, and replacing it with minimum distance in the normal Plotkin bound leads to the new bound, which is valid for both linear and nonlinear UEP codes  相似文献   

11.
Proposes a modification of generalized concatenated codes, which allows to construct some of the best known binary codes in a simple way. Furthermore, a large class of optimal linear unequal error protection codes (LUEP codes) can easily be generated. All constructed codes can be efficiently decoded by the Blokh-Zyablov-Zinov'ev algorithm if an appropriate metric is used  相似文献   

12.
Binary multilevel convolutional codes (CCs) with unequal error protection (UEP) capabilities are studied. These codes belong to the class of generalized concatenated (GC) codes. Binary CCs are used as outer codes. Binary linear block codes of short length, and selected subcodes in their two-way subcode partition chain, are used as inner codes. Multistage decodings are presented that use Viterbi decoders operating on trellises with similar structure to that of the constituent binary CCs. Simulation results of example binary two-level CC's are also reported  相似文献   

13.
In this letter, we propose a new scheme to construct low-density parity-check (LDPC) codes that are suitable for unequal error protection (UEP). We derive UEP density evolution (UDE) formulas for the proposed ensemble over the binary erasure channel (BEC). Using the UDE formulas, high performance UEP codes can be found. Simulation results depict an improvement in the bit error rate of more important bits in comparison with previous results on UEP-LDPC codes.  相似文献   

14.
In this paper, we propose a scheme to construct low-density parity-check (LDPC) codes that are suitable for unequal error protection (UEP). We derive density evolution (DE) formulas for the proposed unequal error protecting LDPC ensembles over the binary erasure channel (BEC). Using the DE formulas, we optimize the codes. For the finite-length cases, we compare our codes with some other LDPC codes, the time-sharing method, and a previous work on UEP using LDPC codes. Simulation results indicate the superiority of the proposed design methodology for UEP  相似文献   

15.
This paper proposes a unified framework for addressing progressive image transmission over noisy channels based on the finite-state Markov channel (FSMC) model. FSMC models are simple yet general enough to model binary symmetric, Gilbert-Elliott, and fading channels. They allow error sequence analysis that facilitates quantifying the statistical characteristics of the embedded bitstreams transmitted over FSMC in closed form. Using a concatenation of rate-compatible puncturing convolutional code and cyclic redundancy check code for error protection, we use a concatenation of rate-compatible punctured convolutional code and cyclic redundancy check code for error protection, which results in an unequal error protection (UEP) system, and find (sub-)optimal rate allocation solutions for our setup. By mapping fading channels to FSMCs, the JSCC problem is thus solved without the burden of simulations using an image-dependent lookup table. Fast algorithms are proposed to search for the optimal UEP. Experiments on embedded image bitstreams over FSMCs confirm our analytical results.  相似文献   

16.
The concept of one-step complete orthogonality is extended to linear UEP (unequal error protection) codes and then, two soft-decision decoding algorithms for the one-step completely orthogonalisable UEP codes are presented  相似文献   

17.
The decoding of unequal error protection product codes, which are a combination of linear unequal error protection (UEP) codes and product codes, is addressed. A nonconstructive proof of the existence of a good error-erasure-decoding algorithm is presented; however, obtaining the decoding procedure is still an open research problem. A particular subclass of UEP product codes is considered, including a decoding algorithm that is an extension of the Blokh-Zyablov decoding algorithm for product codes. For this particular subclass the decoding problem is solved  相似文献   

18.
非规则LDPC码的不等错误保护性能研究   总被引:4,自引:1,他引:3  
马丕明  袁东风  杨秀梅 《通信学报》2005,26(11):132-140
提出了一种具有不等错误保护性能的非规则低密度校验(LDPC,low-density parity-check)码信道编码方案, 构造了重量递增校验(weight-increasing parity-check)矩阵,系统编码时,重要信息比特映射到LDPC码的“精华”比特上。AWGN和Rayliegh衰落信道的仿真结果表明,与随机构造的非规则LDPC码相比,WICP-LDPC码具有好的UEP性能。  相似文献   

19.
The third generation partnership project (3GPP) and digital video broadcasting-handheld standards recommend systematic Raptor codes as application-layer forward error correction for reliable transmission of multimedia data. In all previous studies on systematic Raptor codes, equal error protection for all data was considered. However, in many applications, multimedia data requires unequal error protection (UEP) that provides different levels of protection to different parts of multimedia data. In this paper, we propose a new design method for Raptor codes that provide both UEP and systematic properties over binary erasure channels. Numerical results show that the proposed UEP design is effective for reliable multi-level protection.  相似文献   

20.
Expanding window fountain codes for unequal error protection   总被引:1,自引:0,他引:1  
A novel approach to provide unequal error protection (UEP) using rateless codes over erasure channels, named Expanding Window Fountain (EWF) codes, is developed and discussed. EWF codes use a windowing technique rather than a weighted (non-uniform) selection of input symbols to achieve UEP property. The windowing approach introduces additional parameters in the UEP rateless code design, making it more general and flexible than the weighted approach. Furthermore, the windowing approach provides better performance of UEP scheme, which is confirmed both theoretically and experimentally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号