首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 71 毫秒
1.
缝纫泡沫夹芯复合材料的刚度预测与试验验证   总被引:1,自引:3,他引:1  
基于材料细观结构,建立了缝纫泡沫夹芯复合材料的刚度预测模型,并进行了刚度性能的相关试验验证。其中,对缝纫复合材料层合面板部分,考虑了缝纫角对单胞尺寸和富脂区大小的影响,以及缝纫前后层合面板厚度的变化对复合材料面板纤维体积含量的影响,采用改进的纤维弯曲模型计算了缝纫复合材料层合面板的刚度;对缝纫增强的泡沫夹芯部分,把缝线树脂柱看作是泡沫基体中的增强相,将其简化为特殊的单向增强复合材料,提出了用串并联组合模型来预测其刚度。试验测试了缝纫泡沫夹芯复合材料板试件的刚度。应用本文模型对缝纫层合面板和缝纫泡沫夹芯复合材料板的刚度进行预测,结果均与试验结果吻合较好。采用理论模型系统研究了缝纫参数和结构参数对缝纫泡沫夹芯复合材料刚度的影响。  相似文献   

2.
缝纫泡沫夹芯复合材料细观纤维柱破坏行为   总被引:1,自引:0,他引:1       下载免费PDF全文
缝纫泡沫夹芯复合材料中的纤维柱在拔出过程中的破坏行为复杂导致结构承载性能难以预测。采用真空辅助树脂注射(VARI)工艺制备了缝纫泡沫夹芯复合材料,并使用层间拉伸试验(ITT)研究了缝纫泡沫夹芯复合材料中含有单根缝线纤维柱细观试件的破坏过程。讨论了不同破坏现象对缝线纤维柱拔出摩擦过程的影响,并分析了缝纫泡沫夹芯复合材料的破坏模式。分析了缝线粗细的变化对试件破坏过程中关键的力、位移等参数及能量吸收性能的影响。研究了由于成型工艺所导致的缺胶现象对缝纫泡沫夹芯复合材料性能的影响。结果表明:缝纫泡沫夹芯复合材料的能量吸收性能、关键位移参数及最大载荷都随着缝线变粗而增大。但是缝纫泡沫夹芯复合材料的破坏模式对其也有一定的影响,导致了变化趋势的波动;缺胶缝纫泡沫夹芯复合材料由于缺陷的存在,最大破坏载荷和能量吸收性能均有所下降。  相似文献   

3.
针对泡沫夹芯复合材料声学测试的实际情况,建立了耦合声学有限元法的计算模型,针对计算模型进行了算例验证。结果表明,模型的预测值与试验值趋势吻合较好,计算方法是有效且可行的,可以用于预测泡沫夹芯复合材料的声学性能。同时,研究了与面板和芯材有关的四个参数对夹芯复合材料声学性能的影响规律。  相似文献   

4.
整体屈曲是缝纫复合材料夹芯板的一种重要失效模式。考虑到缝纫夹芯复合材料板一般较厚且面板与芯层厚度相差较大, 缝纫工艺对夹芯板刚度影响较大的特点, 基于高阶剪切理论, 编制了缝纫泡沫夹芯复合材料板稳定性分析的有限元程序。利用该程序对多个算例进行了计算, 所得临界屈曲应力与文献及试验结果吻合很好。同时, 讨论了不同边界条件下缝纫泡沫夹芯复合材料板稳定性随缝纫参数(包括针距、 行距和缝纫针半径)以及结构参数(包括面板铺层角、 芯层厚度和缝纫夹芯板边长)的变化规律。   相似文献   

5.
提出了两型夹芯复合材料基座结构的设计方案,建立了夹芯复合材料基座数值分析模型,通过理论分析确定了影响基座结构刚度和强度性能的主要参数;应用有限元法。分析了铺层方式、支撑厚度和骨架形式等对直支撑基座结构刚度和强度性能的影响规律,计算并讨论了曲率半径对弧形支撑式基座刚度和强度性能的影响;比较了5种夹芯材料基座的结构力学性能,并通过优化设计,确定了夹芯复合材料基座结构形式。  相似文献   

6.
基于热压罐成型工艺,制备了kevlar纤维缝纫泡沫芯材复合材料夹层板,并通过扫描电镜观察了胶膜中的树脂在kevlar纤维束之间的浸润状态,为工程化应用提供参考.选取未缝纫泡沫夹芯复合材料和碳纤维预浸料缝线缝纫泡沫芯材复合材料夹层板为对比试样,实验研究了kevlar纤维缝纫泡沫芯材复合材料夹层板的平压、剪切和侧压力学性能,并考察了缝纫针距、行距的变化对其力学性能和破坏模式的影响.研究表明:在真空压力下,胶膜中的树脂与kevlar纤维浸润良好;对泡沫芯材进行kevlar纤维缝纫增强后,其力学性能显著提高,并改变了夹层板的破坏机理.实验范围内,随着缝纫密度的提高,平压强度和模量增大;夹层板剪切性能和侧压性能受缝纫密度的影响较大,在缝纫参数(缝纫行距×针距)为10 mm×10 mm时,增强效果较佳,其剪切强度和侧压强度分别提高了44%和21%,剪切模量和侧压模量分别提高了34%和127%.  相似文献   

7.
泡沫夹芯结构复合材料VARI工艺模拟仿真技术研究   总被引:1,自引:0,他引:1  
采用模拟仿真软件对聚氯乙烯泡沫夹芯结构复合材料矩形平板成型工艺进行了模拟分析.考察了芯材厚度、芯材的开槽方式及开槽尺寸等对树脂充模过程的影响,确定了适于工程应用的开槽方式及尺寸.  相似文献   

8.
采用Matlab编程,利用经典梁理论和夹层板理论构建了弹性模量、压缩强度等材料参数与泡沫夹芯复合材料弯曲刚度和压缩强度的关系,利用传递矩阵法构建了纵波声速、衰减系数、损耗因子等材料参数与泡沫夹芯复合材料水中插入损失的关系。在此基础上,利用NSGA-II多目标优化算法开展了力学与水声综合设计,初步获得了实用的泡沫夹芯复合材料力学与水声性能综合设计方法。  相似文献   

9.
Z向增强泡沫夹芯阻燃复合材料力学性能   总被引:2,自引:1,他引:1       下载免费PDF全文
研制了一种Z向玻璃纤维增强酚醛泡沫的高阻燃性复合材料, 并试验分析了承力柱高度、 分布密度、 排布方式及缝编纱细度、 缝合面板层数等结构参数对复合材料力学性能的影响。结果表明: 与普通泡沫夹芯复合材料相比, Z向增强泡沫夹芯复合材料的力学性能得到了大幅度提升; 在承力柱分布密度相同的条件下, Z向增强泡沫夹芯复合材料的力学性能基本不随承力柱排布方式而变化; 承力柱高度、 分布密度及缝编纱细度、 缝合面板层数等结构参数对Z向增强泡沫夹芯复合材料的力学性能有重要影响。  相似文献   

10.
针对真空辅助成型工艺(VARI)制备的泡沫夹芯壁板面-芯界面粘接强度较低的问题, 提出铺放本体树脂胶膜和对芯材进行打孔两种解决方案。通过无损检测、三点弯曲力学性能测试、计算机模拟树脂充模流动以及微观界面结构观察, 探究两种方案的可行性及改善效果, 分析了胶膜的有无和厚度、打孔工艺参数对界面性能的影响。结果表明, 在不加入胶膜时界面强度最高, 胶膜厚度在0.5 mm时, 无损检测显示的界面缺陷最少, 胶膜厚度达到2 mm后界面质量下降; 合理设计芯材的打孔行、间距可以促进树脂充模流动, 形成质量好的连续界面, 同时还能提高结构刚度。  相似文献   

11.
马健  燕瑛 《复合材料学报》2013,30(1):230-235
为了发展缝合泡沫夹芯复合材料低速冲击损伤的多尺度分析方法, 建立了缝合泡沫简化力学模型, 将缝合泡沫等效为缝线树脂柱增强的正交各向异性芯材, 其材料参数由各组分性能及所占体积分数根据均一化理论计算得出; 同时, 建立冲击试验有限元模型, 通过界面元模拟面板与芯材之间的层间分层。采用GENOA渐进损伤分析模块对缝合结构冲击动态响应过程进行数值模拟, 并将计算结果与试验记录进行对比分析。结果表明: 缝合可以减小面板破坏面积, 抑制面板与泡沫分层的扩展; 但缝纫会对结构造成初始损伤, 较高的缝合密度使芯材刚度增加, 不利于泡沫结构的缓冲吸能。数值模拟结果与试验记录吻合良好, 验证了多尺度分析方法的正确性。  相似文献   

12.
采用真空辅助树脂注射(VARI)成型工艺制备不同缝合方式和缝合密度的缝合泡沫夹层复合材料,研究缝合参数对平面拉伸、三点弯曲、芯子剪切以及滚筒剥离性能的影响。结果表明:缝合使泡沫夹层复合材料的平面拉伸强度和芯子剪切强度明显降低,可以改善弯曲性能并大幅提高滚筒剥离性能,改进锁式缝合方式优于临缝式缝合方式;适当地增加缝合行距对力学性能有一定的积极作用,但不利于滚筒剥离性能的提高;与未缝合泡沫夹层复合材料相比,当缝合密度为30 mm×10 mm时,改进锁式缝合泡沫夹层复合材料的平拉强度和芯子剪切强度分别降低了14.75%和24.79%,弯曲强度和平均剥离强度分别提高了7.96%和80.78%。  相似文献   

13.
设计了一种新型整体缝合夹芯结构。采用真空导入模塑工艺(VIMP)制备整体缝合夹芯结构复合材料, 研究其在平压载荷作用下的力学性能和破坏模式, 建立其有限元模型, 研究缝合纱线用量对整体缝合夹芯结构复合材料平压力学性能的影响。结果表明:该新型整体缝合夹芯结构复合材料能够在提高缝合纱线数量的同时避免一般斜缝方式引起纤维交叉损坏的弊端。整体缝合夹芯结构复合材料的压缩强度和压缩模量随着缝合纱线数量的增加而增大, 但缝合纱线含量较高时, 比压缩强度有所下降。数值计算结果与试验结果对比分析, 验证了所建立有限元模型的合理性, 说明该模型可用于预测其压缩模量。   相似文献   

14.
Through-thickness stitched foam core sandwich composites were fabricated by using RTM process; and impact performance and damage extent were studied at 1–70 J impact energy levels. The results show that two sharp peak loads and a low-loading plateau appear on the load-time plots at 1–30 J impact energy levels; both sharp peak loads can be considered as the course of penetrating top and bottom facings, a low-loading plateau has the characteristics of penetrating foam cores. Compare to the unstitched samples, the average damage angle of stitched samples increase by 48%, the maximal cracking width and penetration depth of the stitched samples decrease by 67% and 4% at 25 J impact energy levels.  相似文献   

15.
通过RTM工艺成型了点阵增强夹芯结构复合材料,研究了纤维缝合结构对复合材料平压及侧压力学性能的影响,并探索了侧向压缩载荷下夹芯结构复合材料的破坏模式。结果表明,采用纤维缝合的方式可显著提高夹芯结构复合材料的力学性能。双向增强夹芯复合材料在长度和厚度方向上的侧压强度和模量相同,单向增强的侧压强度和模量表现出方向性,且长度方向上的模量明显高于宽度方向的。  相似文献   

16.
The static and fatigue characteristics of polyurethane foam-cored sandwich structures are investigated. Three types of specimens with glass fabric faces and polyurethane foam core are used; non-stitched, stitched and stiffened sandwich specimens. The bending strength of the stitched specimen is improved by 50% compared with the non-stitched specimen, and the stiffened specimen is over 10 times stronger than the non-stitched specimen. After fatigue loading of 106 cycles, the static bending strengths of all specimens decrease compared with those of the static test. To verify the aging effect of polyurethane foam, ultrasonic C-scanning equipment is used to detect damage of the skin laminate alone after the fatigue test for non-stitched specimens. From the results of UT C-scanning images, no damage is found to have occurred during the fatigue test. Results indicate that the decrease in bending strength of foam-cored sandwich structures is caused by the degradation of stiffness due to the aging of the polyurethane foam core during fatigue cycles. To investigate the effect of distance and diameter of stitching thread, four types of stitched specimens are used. The strength of stitched specimen is improved by increasing the stitching thread diameter and decreasing the stitching thread distance. But fatigue characteristics are not predominantly affected by the variation of stitching thread diameter and distance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号