首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
四轮轮毂电机驱动电动汽车各轮驱动力矩独立可控,可通过控制前轴左右两轮的力矩差实现前轮转向。以四轮轮毂电机驱动智能电动汽车为研究对象,针对线控转向系统执行机构失效时的轨迹跟踪和横摆稳定性协同控制问题,提出一种基于差动转向与直接横摆力矩协同的容错控制方法。该方法采用分层控制架构,上层控制器首先基于时变线性模型预测控制方法求解期望前轮转角和附加横摆力矩,然后考虑转向执行机构建模不确定性以及路面干扰,设计基于滑模变结构控制的前轮转角跟踪控制策略。下层控制器以轮胎负荷率最小化为目标,利用有效集法实现四轮转矩优化分配。最后,分别在高速换道和双移线工况下仿真验证了该控制方法的有效性和实时性。  相似文献   

2.
针对车辆在轨迹跟踪过程中,尤其是高速转向等极限工况下,易出现车辆跟踪精度差和失稳的问题,以分布式驱动智能汽车为研究对象,提出一种考虑横向稳定性的轨迹跟踪协同控制策略。首先,建立车辆纵向、横向以及横摆运动的三自由度动力学模型,设计了基于模型预测控制的主动转向控制器,通过优化求解得到跟踪期望轨迹的最佳前轮转角。然后,采用滑模控制设计横摆力矩控制器,将横摆角速度和质心侧偏角作为联合变量,利用积分二自由度控制模型,计算车辆稳定的等效附加横摆力矩。最后,采用二次规划算法设计最优力矩分配控制器,以满足总的驱动力矩和附加横摆力矩的控制需求。仿真试验结果表明,控制系统在极限高速工况下,能够使车辆精确、稳定的跟踪期望轨迹。  相似文献   

3.
电动轮驱动汽车可以独立控制各车轮驱/制动力矩,并能够通过驱动、制动、转向和悬架系统的协同显著提升线控底盘的动力学控制能力,但车辆各子系统控制功能的简单叠加无法发挥整车控制能力。为改善线控底盘的整车稳定性控制效果,提出综合前轮主动转向、四轮差动驱动和悬架主动调控的空间稳定性协同控制方法。搭建整车动力学仿真平台,分析车辆失稳过程特征;构建底盘协同控制架构,计算出车辆状态期望值及主动悬架介入条件,设计出前轮主动转向和四轮差动驱动直接横摆力矩控制权重分配方法;设计出基于模型预测控制的前轮主动转向控制器、基于滑模变结构控制的直接横摆力矩控制器及基于非奇异终端滑模控制的主动悬架控制器并完成了仿真验证。研究表明,提出的底盘协同控制方法在不同附着条件路面上均能保证车辆安全、稳定行驶,所完成研究为线控底盘集成控制策略开发提供了新思路。  相似文献   

4.
基于横摆角速度跟踪控制理论设计了四轮转向车辆稳定性控制器,实现了各速度下控制器的优化及其硬件在环仿真。结果表明控制器在高速段能改善汽车的动力学性能。与传统的前轮转向车辆相比具有优越的操纵稳定性。  相似文献   

5.
基于横摆角速度跟踪控制理论设计了四轮转向车辆稳定性控制器,实现了各速度下控制器的优化及其硬件在环仿真.结果表明控制器在高速段能改善汽车的动力学性能.与传统的前轮转向车辆相比具有优越的操纵稳定性.  相似文献   

6.
文中所研究的汽车动态控制系统是基于模糊逻辑控制的主动前轮转向(AFS)和直接横摆力矩控制(DYC)的集成。控制系统采用分层控制。上层使用模糊逻辑控制器(横摆角速度控制器),输入为横摆角速度偏差及其变化率,其输出为直接横摆力矩控制信号和前轮修正转向角;下层(模糊集成控制器)设计了基于轮胎侧向力工作区的模糊逻辑控制器,通过调整前轮侧向力的方向,激活切换函数来调节模糊逻辑控制器的比例因子。仿真结果表明,使用非线性七自由度车辆模型,与单独的AFS或DYC控制器相比较,使用集成AFS/DYC控制系统,汽车操纵稳定性得到了很大的改善。  相似文献   

7.
轮毂电机驱动汽车可以通过差动驱动抑制车辆横摆和侧倾运动,从而提高车辆侧向稳定性,但受轮毂电机力矩和地面附着力约束的限制,作用效果薄弱。为提升车辆侧向稳定性控制效果,提出综合差动驱动、主动转向和主动悬架的车身横摆与侧倾稳定性底盘协同控制方法。根据轮毂电机驱动汽车特点,对其侧向失稳机理进行分析,基于模型预测控制设计前轮主动转向控制器;利用所提出的变系数指数趋近率求解期望横摆控制力矩,基于最优控制算法计算侧倾控制力矩;最后,构建集成差动驱动、主动转向和主动悬架的侧向稳定性控制器并完成整车侧向稳定性协同控制仿真验证。研究表明,所提出的底盘协同侧向稳定性控制方法可以有效控制车辆的横摆和侧倾运动,使其收敛于理想控制域,为轮毂电机驱动车辆的主动安全性控制提供了理论支持。  相似文献   

8.
基于主动前轮转向横摆角速度反馈控制的研究   总被引:1,自引:1,他引:0  
在主动前轮转向系统中引入横摆角速度反馈传感器,建立了主动前轮转向系统数学模型和横摆角速度反馈控制模型,使用PID控制器实现横摆角速度反馈控制;系统通过产生附加的前轮转角,对前轮转角进行修正,使车辆转向行驶时的横摆角速度和侧偏角很好地跟踪参考模型;并在系统阶跃和正弦输入下分别进行仿真分析,结果表明,在主动前轮转向系统中引入横摆角速度反馈控制可以显著改善车辆横摆角速度的瞬态响应,从而提高了车辆的转向稳定性.  相似文献   

9.
《机械科学与技术》2017,(5):767-772
传统转向系统对驾驶员误操作不能予以纠正,在驾驶过程中驾驶员需不断修正方向以消除外界或内部对车辆的扰动;主动前轮转向系统产生独立于驾驶员的附加前轮转角,改变车辆的横向受力状态克服传统转向系统不足。提出采用自抗扰技术的汽车主动前轮转向系统,根据系统的输入和输出动态跟踪理想参考横摆角速度,使车辆在横摆角速度安全裕度内运行。在MATLAB中实现了自抗扰控制器算法,控制CarSim车辆模型进行直线行驶抗扰试验和双移线试验,研究了自抗扰控制转向系统的抗扰动性能、路径跟踪性能以及对参数变化的鲁棒性,并与PID控制试验结果进行对比。试验结果表明,自抗扰控制的主动前轮转向系统改善了车辆操纵稳定性,具有抗干扰能力强、路径跟踪性能良好和鲁棒性强等优点,且各项性能优于PID控制器。  相似文献   

10.
提出了一种基于主动前轮转向横摆稳定性控制方法,以横摆角速度和质心侧偏角为控制目标。采用鲁棒性较强的模糊控制方法对汽车稳定性进行控制。建立了整车线性二自由度模型,以反馈系统中的误差信号及其变化率作为模糊系统的输入设计了模糊控制器,通过控制横摆力矩来实现车辆稳定性的控制。对转向盘阶跃输入信号和正弦输入信号两种工况分别进行了仿真研究。通过分析仿真结果,该控制方法能有效地控制车辆横摆角速度和质心侧偏角,提高车辆转向时的稳定性,同时能有效的降低驾驶员的操纵负担。  相似文献   

11.
采用二自由度车辆动力学状态方程建立了车辆横摆角速度跟踪控制模型。用横摆角速度与其期望值的差值及其变化率作为模糊控制器的输入,设计了模糊自适应PID控制器。基于模糊自适应PID控制器,进行了前轮转向阶跃输入、正弦输入仿真试验。仿真和分析结果表明,设计的模糊PID控制器可实现对参考模型横摆角速度的跟踪,车辆的操纵稳定性得到了有效改善。  相似文献   

12.
针对智能电动车自动横向控制,建立了车辆横向动力学模型,设计了电动车转向控制器的模型预测(MPC)算法。将前轮转角作为控制输入变量,与期望轨迹的横向距离偏差、横摆角偏差及两者的变化率作为状态变量,控制器对车辆未来的状态变量进行预测,输出最优前轮转角,实现智能横向控制。在控制过程中,同时引入期望状态参数和系统松弛因子,优化车辆行驶状态。利用软件进行联合仿真,并进行实车试验。研究结果表明:控制器均能迅速响应,消除偏差,使车辆快速回到期望轨迹,保证车辆稳定平顺地行驶。  相似文献   

13.
研究通过对线控转向系统进行主动控制,可靠并准确地得到期望的前轮转角。基于建立的线控转向系统数学模型,使用非线性自回归模型确定其系统参数,设计内模控制器跟踪车辆的期望运动状态。通过开环和闭环试验,对控制器在典型的驾驶工况下的有效性进行了验证。通过与PID控制器的结果对比,证明所设计的内模控制器能提供更好的控制性能。为减少驾驶员的操纵负担并确保车辆在不同行驶条件下的稳定性,根据不同工况下的测试结果提出基于增益不变的变角传动比控制策略,并设计了滑模控制器跟踪期望横摆角以实现主动转向。通过对内模和滑模控制器的联合仿真结果表明,所设计的控制器可实现期望横摆角度的精确跟踪,显著提高车辆的操纵灵活性和稳定性。  相似文献   

14.
智能驾驶技术是当前汽车工业的研究热点,四轮轮毂电动机驱动电动汽车为智能驾驶提供了绝佳的线控平台。充分利用左右车轮不对称转矩主动生成横摆力矩,能够在线控转向基础上更好地实现高精度路径跟踪控制。文中提出了一种基于模型预测控制(MPC)的差动转向与主动转向协同路径跟踪控制方法,建立了车辆三自由度动力学模型,设计了前轮转向角和整车直接横摆力矩的滚动优化控制律来追踪规划路径,有效解决了控制器设计面临的动力总成和转向角执行约束挑战。仿真结果表明,该控制方法能够很好地跟踪目标轨迹,并且与单一线控转向控制相比可以获得更好的结果。  相似文献   

15.
以汽车系统动力学为基础,在Matlab/simulink中建立了八自由度整车模型。针对汽车实际转向时存在的非线性特点,以线性二自由度半车模型作为参考标准,结合对车辆稳定性控制原理的分析,设计了以车身横摆角速度和质心侧偏角为控制目标的联合模糊控制器。采取效率车轮单独差动制动以产生附加横摆力矩的策略,最后在两种典型的试验工况下对整车模型进行仿真。仿真结果表明,采用此策略能够切实可行地实现对车辆行驶稳定性的控制,提高了车辆的横向稳定性。  相似文献   

16.
在电动助力转向系统的基础上设计了一种全新的主动前轮转向系统,不仅可以实现转向系统的变传动比,而且还可以弥补转向干预时方向盘力矩的突变。建立了整车动力学模型以及转向盘反力矩模型,设计了模型参考变结构滑模控制器以及转向干预时的力矩补偿控制策略。仿真结果表明,基于主动前轮转向的模型参考变结构滑模控制器能够较好地实现实际车辆对理想车辆的跟踪,可以有效地避免行车过程中人为因素造成的不必要的事故;此外基于电动助力转向系统的力矩补偿控制能较好地改善转向盘反力矩突变导致的驾驶员不适应。  相似文献   

17.
研究对象为无人差动转向车辆的动力学控制。通过控制发动机驱动力矩实现车辆的直线行驶,控制左右两侧车轮的液压制动力矩实现车辆的转向行驶,来满足车辆的期望车速与期望横摆角速度需求。相比于传统基于非完整约束模型的差动转向车辆的运动控制,控制算法的设计是建立在分析被控对象动力学模型以及非线性轮胎模型的基础上,考虑到车辆在运动过程中轮胎滑移以及执行器力矩受限对车辆驱制动的影响。基于条件积分方法,设计了抗积分饱和的差动转向车辆动力学控制器,保证了在轮胎力和执行器力矩受限下对参考信号进行准确的跟踪。最后通过实车试验验证了控制算法的有效性。  相似文献   

18.
横摆稳定性和轨迹跟踪性能对无人车至关重要。为此,提出一种基于模型预测控制的轨迹跟踪控制器,将考虑瞬时极限性能的稳定性判据添加到控制器约束中,并且利用性能驱动的方式对控制器的参数进行优化。首先根据车辆3自由度动力学模型建立横摆角速度-质心侧偏角相平面,分析前轮转角对相平面平衡点的影响,通过建立相平面的等倾几何曲线,分析车辆的稳定性特征,设计出基于包络线的横摆稳定性判据。然后将模型预测控制器的代价函数参数化,根据性能目标设计特定场景的全局代价作为评价函数,利用贝叶斯优化进行预测时域和代价函数权重两类参数的优化,实现目标任务全局性能最优。仿真和实车试验表明,所提算法在保证车辆稳定的前提下,发挥了车辆的动力学极限,采用的贝叶斯优化方法对轨迹跟踪模型预测控制器的参数进行了优化,实现了轨迹跟踪性能的提高。  相似文献   

19.
针对重型车辆极限工况下易侧翻问题,建立重型车辆三自由度模型,并利用Trucksim建立被控重型车辆模型,以横摆角速度跟踪误差定义积分形式的切换函数,设计一种基于差动制动的模糊滑模控制器。当横向载荷转移率(LTR)超过侧翻因子时,模糊滑模控制求解出车辆所需的目标横摆力矩,根据制动轮选取逻辑对车轮差动制动。通过Trucksim和Simulink对重型车辆防侧翻控制器进行联合仿真,结果表明该控制器提高了车辆在行驶过程中抗侧翻能力,保证了车辆良好的操纵稳定性和路径跟踪能力。  相似文献   

20.
提出一种基于粒子群优化与径向基(Radical basis function,RBF)神经网络优化算法的商用车横向稳定性优化控制策略,采用上、下双层控制模式,上层控制器以横摆角速度与质心侧偏角为控制目标,依据车辆行驶工况的反馈信息,利用粒子群优化(Particle swarm optimization,PSO)算法对模糊控制器中的比例因子参数实施动态优化,实现对前轮附加转角和横摆力矩的控制。下层控制器采用RBF神经网络优化制动力分配,通过对横摆角速度偏差的自适应学习,结合滑移率控制器实时优化分配左、右前轮的制动器制动力并修正前轮转角。基于搭建的Truck Sim与Matlab/Simulink联合仿真环境,选取典型试验工况进行车辆横向稳定性仿真分析。研究结果表明,与传统的电子稳定控制系统(Electronic stability control,ESC)控制策略相比较,优化控制后车辆的横摆角速度、质心侧偏角以及侧向加速度等动态响应指标均满足控制要求,并且实际行驶轨迹与目标规划路径之间具有良好的跟随性,有效改善了低附着路面行驶条件下商用车的横向稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号