首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Mining Fuzzy Multiple-Level Association Rules from Quantitative Data   总被引:2,自引:0,他引:2  
Machine-learning and data-mining techniques have been developed to turn data into useful task-oriented knowledge. Most algorithms for mining association rules identify relationships among transactions using binary values and find rules at a single-concept level. Transactions with quantitative values and items with hierarchical relationships are, however, commonly seen in real-world applications. This paper proposes a fuzzy multiple-level mining algorithm for extracting knowledge implicit in transactions stored as quantitative values. The proposed algorithm adopts a top-down progressively deepening approach to finding large itemsets. It integrates fuzzy-set concepts, data-mining technologies and multiple-level taxonomy to find fuzzy association rules from transaction data sets. Each item uses only the linguistic term with the maximum cardinality in later mining processes, thus making the number of fuzzy regions to be processed the same as the number of original items. The algorithm therefore focuses on the most important linguistic terms for reduced time complexity.  相似文献   

3.
A genetic-fuzzy mining approach for items with multiple minimum supports   总被引:2,自引:2,他引:0  
Data mining is the process of extracting desirable knowledge or interesting patterns from existing databases for specific purposes. Mining association rules from transaction data is most commonly seen among the mining techniques. Most of the previous mining approaches set a single minimum support threshold for all the items and identify the relationships among transactions using binary values. In the past, we proposed a genetic-fuzzy data-mining algorithm for extracting both association rules and membership functions from quantitative transactions under a single minimum support. In real applications, different items may have different criteria to judge their importance. In this paper, we thus propose an algorithm which combines clustering, fuzzy and genetic concepts for extracting reasonable multiple minimum support values, membership functions and fuzzy association rules from quantitative transactions. It first uses the k-means clustering approach to gather similar items into groups. All items in the same cluster are considered to have similar characteristics and are assigned similar values for initializing a better population. Each chromosome is then evaluated by the criteria of requirement satisfaction and suitability of membership functions to estimate its fitness value. Experimental results also show the effectiveness and the efficiency of the proposed approach.  相似文献   

4.
Data mining is most commonly used in attempts to induce association rules from transaction data. Transactions in real-world applications, however, usually consist of quantitative values. This paper thus proposes a fuzzy data-mining algorithm for extracting both association rules and membership functions from quantitative transactions. We present a GA-based framework for finding membership functions suitable for mining problems and then use the final best set of membership functions to mine fuzzy association rules. The fitness of each chromosome is evaluated by the number of large 1-itemsets generated from part of the previously proposed fuzzy mining algorithm and by the suitability of the membership functions. Experimental results also show the effectiveness of the framework.  相似文献   

5.
Data mining is most commonly used in attempts to induce association rules from databases which can help decision-makers easily analyze the data and make good decisions regarding the domains concerned. Different studies have proposed methods for mining association rules from databases with crisp values. However, the data in many real-world applications have a certain degree of imprecision. In this paper we address this problem, and propose a new data-mining algorithm for extracting interesting knowledge from databases with imprecise data. The proposed algorithm integrates imprecise data concepts and the fuzzy apriori mining algorithm to find interesting fuzzy association rules in given databases. Experiments for diagnosing dyslexia in early childhood were made to verify the performance of the proposed algorithm.  相似文献   

6.
Data mining is the process of extracting desirable knowledge or interesting patterns from existing databases for specific purposes. Most of the previous approaches set a single minimum support threshold for all the items and identify the relationships among transactions using binary values. In real applications, different items may have different criteria to judge their importance. In the past, we proposed an algorithm for extracting appropriate multiple minimum support values, membership functions and fuzzy association rules from quantitative transactions. It used requirement satisfaction and suitability of membership functions to evaluate fitness values of chromosomes. The calculation for requirement satisfaction might take a lot of time, especially when the database to be scanned could not be totally fed into main memory. In this paper, an enhanced approach, called the fuzzy cluster-based genetic-fuzzy mining approach for items with multiple minimum supports (FCGFMMS), is thus proposed to speed up the evaluation process and keep nearly the same quality of solutions as the previous one. It divides the chromosomes in a population into several clusters by the fuzzy k-means clustering approach and evaluates each individual according to both their cluster and their own information. Experimental results also show the effectiveness and the efficiency of the proposed approach.  相似文献   

7.
Genetic-Fuzzy Data Mining With Divide-and-Conquer Strategy   总被引:1,自引:0,他引:1  
Data mining is most commonly used in attempts to induce association rules from transaction data. Most previous studies focused on binary-valued transaction data. Transaction data in real-world applications, however, usually consist of quantitative values. This paper, thus, proposes a fuzzy data-mining algorithm for extracting both association rules and membership functions from quantitative transactions. A genetic algorithm (GA)-based framework for finding membership functions suitable for mining problems is proposed. The fitness of each set of membership functions is evaluated by the fuzzy-supports of the linguistic terms in the large 1-itemsets and by the suitability of the derived membership functions. The evaluation by the fuzzy supports of large 1-itemsets is much faster than that when considering all itemsets or interesting association rules. It can also help divide-and-conquer the derivation process of the membership functions for different items. The proposed GA framework, thus, maintains multiple populations, each for one item's membership functions. The final best sets of membership functions in all the populations are then gathered together to be used for mining fuzzy association rules. Experiments are conducted to analyze different fitness functions and set different fitness functions and setting different supports and confidences. Experiments are also conducted to compare the proposed algorithm, the one with uniform fuzzy partition, and the existing one without divide-and-conquer, with results validating the performance of the proposed algorithm.  相似文献   

8.
Fuzzy mining approaches have recently been discussed for deriving fuzzy knowledge. Since items may have their own characteristics, different minimum supports and membership functions may be specified for different items. In the past, we proposed a genetic-fuzzy data-mining algorithm for extracting minimum supports and membership functions for items from quantitative transactions. In that paper, minimum supports and membership functions of all items are encoded in a chromosome such that it may be not easy to converge. In this paper, an enhanced approach is proposed, which processes the items in a divide-and-conquer strategy. The approach is called divide-and-conquer genetic-fuzzy mining algorithm for items with Multiple Minimum Supports (DGFMMS), and is designed for finding minimum supports, membership functions, and fuzzy association rules. Possible solutions are evaluated by their requirement satisfaction divided by their suitability of derived membership functions. The proposed GA framework maintains multiple populations, each for one item’s minimum support and membership functions. The final best minimum supports and membership functions in all the populations are then gathered together to be used for mining fuzzy association rules. Experimental results also show the effectiveness of the proposed approach.  相似文献   

9.
In real-world applications, transactions usually consist of quantitative values. Many fuzzy data mining approaches have thus been proposed for finding fuzzy association rules with the predefined minimum support from the give quantitative transactions. However, the common problems of those approaches are that an appropriate minimum support is hard to set, and the derived rules usually expose common-sense knowledge which may not be interesting in business point of view. In this paper, an algorithm for mining fuzzy coherent rules is proposed for overcoming those problems with the properties of propositional logic. It first transforms quantitative transactions into fuzzy sets. Then, those generated fuzzy sets are collected to generate candidate fuzzy coherent rules. Finally, contingency tables are calculated and used for checking those candidate fuzzy coherent rules satisfy the four criteria or not. If yes, it is a fuzzy coherent rule. Experiments on the foodmart dataset are also made to show the effectiveness of the proposed algorithm.  相似文献   

10.
Data mining is the process of extracting desirable knowledge or interesting patterns from existing databases for specific purposes. In real-world applications, transactions may contain quantitative values and each item may have a lifespan from a temporal database. In this paper, we thus propose a data mining algorithm for deriving fuzzy temporal association rules. It first transforms each quantitative value into a fuzzy set using the given membership functions. Meanwhile, item lifespans are collected and recorded in a temporal information table through a transformation process. The algorithm then calculates the scalar cardinality of each linguistic term of each item. A mining process based on fuzzy counts and item lifespans is then performed to find fuzzy temporal association rules. Experiments are finally performed on two simulation datasets and the foodmart dataset to show the effectiveness and the efficiency of the proposed approach.  相似文献   

11.
Many researchers in database and machine learning fields are primarily interested in data mining because it offers opportunities to discover useful information and important relevant patterns in large databases. Most previous studies have shown how binary valued transaction data may be handled. Transaction data in real-world applications usually consist of quantitative values, so designing a sophisticated data-mining algorithm able to deal with various types of data presents a challenge to workers in this research field. In the past, we proposed a fuzzy data-mining algorithm to find association rules. Since sequential patterns are also very important for real-world applications, this paper thus focuses on finding fuzzy sequential patterns from quantitative data. A new mining algorithm is proposed, which integrates the fuzzy-set concepts and the AprioriAll algorithm. It first transforms quantitative values in transactions into linguistic terms, then filters them to find sequential patterns by modifying the AprioriAll mining algorithm. Each quantitative item uses only the linguistic term with the maximum cardinality in later mining processes, thus making the number of fuzzy regions to be processed the same as the number of the original items. The patterns mined out thus exhibit the sequential quantitative regularity in databases and can be used to provide some suggestions to appropriate supervisors.  相似文献   

12.
Many fuzzy data mining approaches have been proposed for finding fuzzy association rules with the predefined minimum support from quantitative transaction databases. Since each item has its own utility, utility itemset mining has become increasingly important. However, common problems with existing approaches are that an appropriate minimum support is difficult to determine and that the derived rules usually expose common-sense knowledge, which may not be interesting from a business point of view. This study thus proposes an algorithm for mining high-coherent-utility fuzzy itemsets to overcome problems with the properties of propositional logic. Quantitative transactions are first transformed into fuzzy sets. Then, the utility of each fuzzy itemset is calculated according to the given external utility table. If the value is larger than or equal to the minimum utility ratio, the itemset is considered as a high-utility fuzzy itemset. Finally, contingency tables are calculated and used for checking whether a high-utility fuzzy itemset satisfies four criteria. If so, it is a high-coherent-utility fuzzy itemset. Experiments on the foodmart and simulated datasets are made to show that the derived itemsets by the proposed algorithm not only can reach better profit than selling them separately, but also can provide fewer but more useful utility itemsets for decision-makers.  相似文献   

13.
Cluster-Based Evaluation in Fuzzy-Genetic Data Mining   总被引:2,自引:0,他引:2  
Data mining is commonly used in attempts to induce association rules from transaction data. Most previous studies focused on binary-valued transaction data. Transactions in real-world applications, however, usually consist of quantitative values. In the past, we proposed a fuzzy-genetic data-mining algorithm for extracting both association rules and membership functions from quantitative transactions. It used a combination of large 1-itemsets and membership-function suitability to evaluate the fitness values of chromosomes. The calculation for large 1-itemsets could take a lot of time, especially when the database to be scanned could not totally fed into main memory. In this paper, an enhanced approach, called the cluster-based fuzzy-genetic mining algorithm, is thus proposed to speed up the evaluation process and keep nearly the same quality of solutions as the previous one. It divides the chromosomes in a population into clusters by the - means clustering approach and evaluates each individual according to both cluster and their own information. Experimental results also show the effectiveness and efficiency of the proposed approach.  相似文献   

14.
为了在事务数据库中发现关联规则,在现实挖掘应用中,经常采用不同的标准去判断不同项目的重要性,管理项目之间的分类关系和处理定量数据集这3个方法去处理问题,因此提出一个在定量事务数据库中采用多最小支持度,在项目集中获取隐含知识的多层模糊关联规则挖掘算法。该挖掘算法使用两种支持度约束和至上而下逐步细化的方法推导出频繁项集,同时可以发现交叉层次的模糊关联规则。通过实例证明了该挖掘算法在多最小支持度约束下推导出的多层模糊关联规则是易于理解和有意义的,具有很好的效率和伸缩性。  相似文献   

15.
Fuzzy data mining is used to extract fuzzy knowledge from linguistic or quantitative data. It is an extension of traditional data mining and the derived knowledge is relatively meaningful to human beings. In the past, we proposed a mining algorithm to find suitable membership functions for fuzzy association rules based on ant colony systems. In that approach, precision was limited by the use of binary bits to encode the membership functions. This paper elaborates on the original approach to increase the accuracy of results by adding multi-level processing. A multi-level ant colony framework is thus designed and an algorithm based on the structure is proposed to achieve the purpose. The proposed approach first transforms the fuzzy mining problem into a multi-stage graph, with each route representing a possible set of membership functions. The new approach then extends the previous one, using multi-level processing to solve the problem in which the maximum quantities of item values in the transactions may be large. The membership functions derived in a given level will be refined in the subsequent level. The final membership functions in the last level are then outputted to the rule-mining phase to find fuzzy association rules. Experiments are also performed to show the performance of the proposed approach. The experimental results show that the proposed multi-level ant colony systems mining approach can obtain improved results.  相似文献   

16.
针对单一层次结构实现规则提取具有规则提取准确性不高、算法运行时间长、难以满足用户使用需求的问题,提出一种基于改进多层次模糊关联规则的定量数据挖掘算法。采用高频项目集合,通过不断深化迭代的方法形成自顶向下的挖掘过程,整合模糊集合理论、数据挖掘算法以及多层次分类技术,从事务数据集中寻找模糊关联规则,挖掘出储存在多层次结构事务数据库中定量值信息的隐含知识,实现用户的定制化信息挖掘需求。实验结果表明,提出的数据挖掘算法在挖掘精度和运算时间方面相较于其他算法具有突出优势,可为多层次关联规则提取方法的实际应用带来新的发展空间。  相似文献   

17.
Discovery of fuzzy temporal association rules   总被引:1,自引:0,他引:1  
We propose a data mining system for discovering interesting temporal patterns from large databases. The mined patterns are expressed in fuzzy temporal association rules which satisfy the temporal requirements specified by the user. Temporal requirements specified by human beings tend to be ill-defined or uncertain. To deal with this kind of uncertainty, a fuzzy calendar algebra is developed to allow users to describe desired temporal requirements in fuzzy calendars easily and naturally. Fuzzy operations are provided and users can define complicated fuzzy calendars to discover the knowledge in the time intervals that are of interest to them. A border-based mining algorithm is proposed to find association rules incrementally. By keeping useful information of the database in a border, candidate itemsets can be computed in an efficient way. Updating of the discovered knowledge due to addition and deletion of transactions can also be done efficiently. The kept information can be used to help save the work of counting and unnecessary scans over the updated database can be avoided. Simulation results show the effectiveness of the proposed system. A performance comparison with other systems is also given.  相似文献   

18.
It is not an easy task to know a priori the most appropriate fuzzy sets that cover the domains of quantitative attributes for fuzzy association rules mining. In general, it is unrealistic that experts can always provide such sets. And finding the most appropriate fuzzy sets becomes a more complex problem when items are not considered to have equal importance and the support and confidence parameters required for the association rules mining process are specified as linguistic terms. Existing clustering based automated methods are not satisfactory because they do not consider the optimization of the discovered membership functions. In order to tackle this problem, we propose Genetic Algorithms (GAs) based clustering method, which dynamically adjusts the fuzzy sets to provide maximum profit based on user specified linguistic minimum support and confidence terms. This is achieved by tuning the base values of the membership functions for each quantitative attribute with respect to two different evaluation functions maximizing the number of large itemsets and the average of the confidence intervals of the generated rules. To the best of our knowledge, this is the first effort in this direction. Experiments conducted on 100 K transactions from the adult database of United States census in year 2000 demonstrate that the proposed clustering method exhibits good performance in terms of the number of produced large itemsets and interesting association rules.  相似文献   

19.
Fuzzy utility mining has been an emerging research issue because of its simplicity and comprehensibility. Different from traditional fuzzy data mining, fuzzy utility mining considers not only quantities of items in transactions but also their profits for deriving high fuzzy utility itemsets. In this paper, we introduce a new fuzzy utility measure with the fuzzy minimum operator to evaluate the fuzzy utilities of itemsets. Besides, an effective fuzzy utility upper-bound model based on the proposed measure is designed to provide the downward-closure property in fuzzy sets, thus reducing the search space of finding high fuzzy utility itemsets. A two-phase fuzzy utility mining algorithm, named TPFU, is also proposed and described for solving the problem of fuzzy utility mining. At last, the experimental results on both synthetic and real datasets show that the proposed algorithm has good performance.  相似文献   

20.
In Association rule mining, the quantitative attribute values are converted into Boolean values using fixed intervals. Conventional association rule mining algorithms are then applied to find relations among the attribute values. These intervals may not be concise and meaningful enough for human users to easily obtain non trivial knowledge from those rules discovered. Clustering techniques can be used for segmenting quantitative values into meaningful groups instead of fixed intervals. But the conventional clustering techniques like k-means and c-means require the user to specify the number of clusters and initial cluster centres. This initialization is one of the major challenges of clustering. A novel fuzzy based unsupervised clustering algorithm proposed by the authors is extended to segment quantitative values into fuzzy clusters in this paper. Membership values of quantitative items in the partitioning fuzzy clusters are used with weighted fuzzy rule mining techniques to find natural association rules. This fuzzy based method for handling quantitative attributes is compared with that of fixed intervals and segmenting using conventional k-means clustering method along with Apriori algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号