共查询到20条相似文献,搜索用时 15 毫秒
1.
Neural Computing and Applications - A recommender system plays a vital role in information filtering and retrieval, and its application is omnipresent in many domains. There are some drawbacks such... 相似文献
2.
Multimedia Tools and Applications - Drowsiness is a feeling of sleepiness before the sleep onset and has severe implications from a safety perspective for the individuals involved in industrial... 相似文献
3.
Graph clustering is successfully applied in various applications for finding similar patterns. Recently, deep learning- based autoencoder has been used efficiently for detecting disjoint clusters. However, in real-world graphs, vertices may belong to multiple clusters. Thus, it is obligatory to analyze the membership of vertices toward clusters. Furthermore, existing approaches are centralized and are inefficient in handling large graphs. In this paper, a deep learning-based model ‘DFuzzy’ is proposed for finding fuzzy clusters from large graphs in distributed environment. It performs clustering in three phases. In first phase, pre-training is performed by initializing the candidate cluster centers. Then, fine tuning is performed to learn the latent representations by mining the local information and capturing the structure using PageRank. Further, modularity is used to redefine clusters. In last phase, reconstruction error is minimized and final cluster centers are updated. Experiments are performed over real-life graph data, and the performance of DFuzzy is compared with four state-of-the-art clustering algorithms. Results show that DFuzzy scales up linearly to handle large graphs and produces better quality of clusters when compared to state-of-the-art clustering algorithms. It is also observed that deep structures can help in getting better graph representations and provide improved clustering performance. 相似文献
4.
Applied Intelligence - In the present study, we present an intelligent earthquake signal detector that provides added assistance to automate traditional disaster responses. To effectively respond... 相似文献
6.
The Bees Algorithm (BA) is a population-based metaheuristic algorithm inspired by the foraging behavior of honeybees. This algorithm has been successfully used as an optimization tool in combinatorial and functional optimization fields. In addition, its behavior very closely mimics the actual behavior that occurs in nature, and it is very simple and easy to implement. However, its convergence speed to the optimal solution still needs further improvement and it also needs a mechanism to obviate getting trapped in local optima. In this paper, a novel initialization algorithm based on the patch concept and Levy flight distribution is proposed to initialize the population of bees in BA. Consequently, we incorporate this initialization procedure into a proposed enhanced BA variant. The proposed variant is more natural than conventional variants of BA. It mimics the patch environment in nature and Levy flight, which is believed to characterize the foraging patterns of bees in nature. The results of experiments conducted on several widely used high-dimensional benchmarks indicate that our proposed enhanced BA variant significantly outperforms other BA variants and state-of-the-art variants of the Artificial Bee Colony (ABC) algorithm in terms of solution quality, convergence speed, and success rate. In addition, the results of experimental analyses conducted indicate that our proposed enhanced BA is very stable, has the ability to deal with differences in search ranges, and rapidly converges without getting stuck in local optima. 相似文献
7.
Neural Computing and Applications - Digital forensics has a vital effect in several domains and mainly focuses on reactive measures, especially when facing digital incidents. Gender identification... 相似文献
8.
A lot of malicious applications appears every day, threatening numerous users. Therefore, a surge of studies have been conducted to protect users from newly emerging malware by using machine learning algorithms. Albeit existing machine or deep learning-based Android malware detection approaches achieve high accuracy by using a combination of multiple features, it is not possible to employ them on our mobile devices due to the high cost for using them. In this paper, we propose MAPAS, a malware detection system, that achieves high accuracy and adaptable usages of computing resources. MAPAS analyzes behaviors of malicious applications based on API call graphs of them by using convolution neural networks (CNN). However, MAPAS does not use a classifier model generated by CNN, it only utilizes CNN for discovering common features of API call graphs of malware. For efficiently detecting malware, MAPAS employs a lightweight classifier that calculates a similarity between API call graphs used for malicious activities and API call graphs of applications that are going to be classified. To demonstrate the effectiveness and efficiency of MAPAS, we implement a prototype and thoroughly evaluate it. And, we compare MAPAS with a state-of-the-art Android malware detection approach, MaMaDroid. Our evaluation results demonstrate that MAPAS can classify applications 145.8% faster and uses memory around ten times lower than MaMaDroid. Also, MAPAS achieves higher accuracy (91.27%) than MaMaDroid (84.99%) for detecting unknown malware. In addition, MAPAS can generally detect any type of malware with high accuracy.
相似文献
9.
Artificial Life and Robotics - Multi-instance object tracking is an active research problem in computer vision, where most novel methods analyze and locate targets on videos taken from static... 相似文献
10.
Partitional clustering of categorical data is normally performed by using K-modes clustering algorithm, which works well for large datasets. Even though the design and implementation of K-modes algorithm is simple and efficient, it has the pitfall of randomly choosing the initial cluster centers for invoking every new execution that may lead to non-repeatable clustering results. This paper addresses the randomized center initialization problem of K-modes algorithm by proposing a cluster center initialization algorithm. The proposed algorithm performs multiple clustering of the data based on attribute values in different attributes and yields deterministic modes that are to be used as initial cluster centers. In the paper, we propose a new method for selecting the most relevant attributes, namely Prominent attributes, compare it with another existing method to find Significant attributes for unsupervised learning, and perform multiple clustering of data to find initial cluster centers. The proposed algorithm ensures fixed initial cluster centers and thus repeatable clustering results. The worst-case time complexity of the proposed algorithm is log-linear to the number of data objects. We evaluate the proposed algorithm on several categorical datasets and compared it against random initialization and two other initialization methods, and show that the proposed method performs better in terms of accuracy and time complexity. The initial cluster centers computed by the proposed approach are close to the actual cluster centers of the different data we tested, which leads to faster convergence of K-modes clustering algorithm in conjunction to better clustering results. 相似文献
11.
Next Point-of-interest (POI) recommendation has been recognized as an important technique in location-based services, and existing methods aim to utilize sequential models to return meaningful recommendation results. But these models fail to fully consider the phenomenon of user interest drift, i.e. a user tends to have different preferences when she is in out-of-town areas, resulting in sub-optimal results accordingly. To achieve more accurate next POI recommendation for out-of-town users, an adaptive attentional deep neural model HOPE is proposed in this paper for modeling user’s out-of-town dynamic preferences precisely. Aside from hometown preferences of a user, it captures the long and short-term preferences of the user in out-of-town areas using “Asymmetric-SVD” and “TC-SeqRec” respectively. In addition, toward the data sparsity problem of out-of-town preference modeling, a region-based pattern discovery method is further adopted to capture all visitor’s crowd preferences of this area, enabling out-of-town preferences of cold start users to be captured reasonably. In addition, we adaptively fuse all above factors according to the contextual information by adaptive attention, which incorporates temporal gating to balance the importance of the long-term and short-term preferences in a reasonable and explainable way. At last, we evaluate the HOPE with baseline sequential models for POI recommendation on two real datasets, and the results demonstrate that our proposed solution outperforms the state-of-art models significantly. 相似文献
12.
在2009年结束的Netflix推荐大赛中,由于顶级参赛小组均使用集成学习算法,使得基于Bagging和Stacking的Ensemble方法得到了广泛的关注,而基于Boosting的集成学习方法相对来说却无人问津。首先分析了基于Boosting的集成学习算法在分类问题中的优势,以及在推荐问题上的缺陷。通过对用户评分矩阵的简化和分解,将问题转换为简单的分类问题,使得Boosting的集成学习算法能够应用到推荐问题中,提出了基于KNN的集成学习推荐算法,通过集成多个不同的相似度计算方法来提高最终的推荐准确率。在大规模真实数据集上的实验说明,基于Boosting的学习框架可以较大提升单个推荐算法的性能。 相似文献
13.
Explosive growth of big data demands efficient and fast algorithms for nearest neighbor search. Deep learning-based hashing methods have proved their efficacy to learn advanced hash functions that suit the desired goal of nearest neighbor search in large image-based data-sets. In this work, we present a comprehensive review of different deep learning-based supervised hashing methods particularly for image data-sets suggested by various researchers till date to generate advanced hash functions. We categorize prior works into a five-tier taxonomy based on: (i) the design of network architecture, (ii) training strategy based on nature of data-set, (iii) the type of loss function, (iv) the similarity measure and, (v) the nature of quantization. Further, different data-sets used in prior works are reported and compared based on various challenges in the characteristics of images that are part of the data-sets. Lastly, different future directions such as incremental hashing, cross-modality hashing and guidelines to improve design of hash functions are discussed. Based on our comparative review, it has been observed that generative adversarial networks-based hashing models outperform other methods. This is due to the fact that they leverage more data in the form of both real world and synthetically generated data. Furthermore, it has been perceived that triplet-loss-based loss functions learn better discriminative representations by pushing similar patterns together and dis-similar patterns away from each other. This study and its observations shall be useful for the researchers and practitioners working in this emerging research field. 相似文献
14.
The Journal of Supercomputing - Since the rich semantics of attribute information has become a great supplement to the ratings data in designing recommender systems, fusing attributes information... 相似文献
15.
Pattern Analysis and Applications - This paper proposes a novel behavior-inspired recommendation algorithm named TimeFly algorithm, which works on the idea of altering behavior of the user with... 相似文献
16.
The Journal of Supercomputing - With the recent emergence of artificial intelligence (AI) technology, autonomous vehicle industry has rapidly adopted this technology to investigate self-driving... 相似文献
17.
化探异常识别是成矿预测的重要依据。化探异常识别本质上是一不均衡数据的分类问题。异常识别过程中面临的主要问题是高维数据的处理问题,流形学习通过非线性降维方法实现维数约简。提出了一种基于流形学习的异常识别算法,通过流形学习进行维数约简,结合AdaCost技术,以改善不平衡数据的分类性能。以某锡铜多金属矿床的数据为研究对象进行仿真实验,实验结果表明该算法能够更准确地圈定区域化探异常,为成矿预测与评价提供了新的解决途径。 相似文献
18.
针对现实系统中用户偏好随时间动态变化且一个用户ID背后可能是一个家庭的多个成员在共用的问题,提出一种为这类隐含多个类型成员行为的群组用户解决其偏好随时间而变化的动态推荐算法。首先,假设用户的历史行为数据包括曝光数据和点击数据,并通过学习当前时刻下群组用户的各类型角色权重来判别当前成员角色;其次,根据曝光数据提出两种设计思路来构造流行度模型,并采用逆倾向评分加权方法来平衡训练数据;最后,利用矩阵分解技术得出随时间变化的用户潜在偏好因子和物品潜在属性因子,计算两者内积后得出用户随时间变化的Top- K偏好推荐。实验结果表明,该算法在召回率、平均精度均值(MAP)、归一化折损累计增益(NDCG)这三个指标上一天24个时刻中均能有至少16个时刻的表现优于基准方法,并能缩短运行时间,降低计算的时间复杂度 相似文献
19.
Multimedia Tools and Applications - Videos – a high volume of texts – broadcast via different media, such as television and the internet. Since Optical Character Recognition (OCR)... 相似文献
20.
The Journal of Supercomputing - With the recent developments in Internet of Things (IoT), the number of sensors that generate raw data with high velocity, variety, and volume is tremendously... 相似文献
|