首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 149 毫秒
1.
Distributed Constraint Optimization Problems (DCOPs) are NP-hard and therefore the number of studies that consider incomplete algorithms for solving them is growing. Specifically, the Max-sum algorithm has drawn attention in recent years and has been applied to a number of realistic applications. Unfortunately, in many cases Max-sum does not produce high-quality solutions. More specifically, Max-sum does not converge and explores solutions of low quality when run on problems whose constraint graph representation contains multiple cycles of different sizes. In this paper we advance the state-of-the-art in incomplete algorithms for DCOPs by: (1) proposing a version of the Max-sum algorithm that operates on an alternating directed acyclic graph (Max-sum_AD), which guarantees convergence in linear time; (2) solving a major weakness of Max-sum and Max-sum_AD that causes inconsistent costs/utilities to be propagated and affect the assignment selection, by introducing value propagation to Max-sum_AD (Max-sum_ADVP); and (3) proposing exploration heuristic methods that evidently improve the algorithms performance further. We prove that Max-sum_ADVP converges to monotonically improving states after each change of direction, and that it is guaranteed to converge in pseudo-polynomial time to a stable solution that does not change with further changes of direction. Our empirical study reveals a large improvement in the quality of the solutions produced by Max-sum_ADVP on various benchmarks, compared to the solutions produced by the standard Max-sum algorithm, Bounded Max-sum and Max-sum_AD with no value propagation. It is found to be the best guaranteed convergence inference algorithm for DCOPs. The exploration methods we propose for Max-sum_ADVP improve its performance further. However, anytime results demonstrate that their exploration level is not as efficient as a version of Max-sum, which uses Damping.  相似文献   

2.
In this paper we propose a novel message-passing algorithm, the so-called Action-GDL, as an extension to the generalized distributive law (GDL) to efficiently solve DCOPs. Action-GDL provides a unifying perspective of several dynamic programming DCOP algorithms that are based on GDL, such as DPOP and DCPOP algorithms. We empirically show how Action-GDL using a novel distributed post-processing heuristic can outperform DCPOP, and by extension DPOP, even when the latter uses the best arrangement provided by multiple state-of-the-art heuristics.  相似文献   

3.
The Distributed Constraint Optimization Problem (DCOP) lies at the foundations of multiagent cooperation. With DCOPs, the optimization in distributed resource allocation problems is formalized using constraint optimization problems. The solvers for the problem are designed based on decentralized cooperative algorithms that are performed by multiple agents. In a conventional DCOP, a single objective is considered. The Multiple Objective Distributed Constraint Optimization Problem (MODCOP) is an extension of the DCOP framework, where agents cooperatively have to optimize simultaneously multiple objective functions. In the conventional MODCOPs, a few objectives are globally defined and agents cooperate to find the Pareto optimal solution. However, such models do not capture the interests of each agent. On the other hand, in several practical problems, the share of each agent is important. Such shares are modeled as preference values of agents. This class of problems can be defined using the MODCOP on the preferences of agents. In particular, we define optimization problems based on leximin ordering and Asymmetric DCOPs (Leximin AMODCOPs). The leximin defines an ordering among vectors of objective values. In addition, Asymmetric DCOPs capture the preferences of agents. Because the optimization based on the leximin ordering improves the equality among the satisfied preferences of the agents, this class of problems is important. We propose several solution methods for Leximin AMODCOPs generalizing traditional operators into the operators on sorted objective vectors and leximin. The solution methods applied to the Leximin AMODCOPs are based on pseudo trees. Also, the investigated search methods employ the concept of boundaries of the sorted vectors.  相似文献   

4.
In this paper, we consider algorithms for distributed constraint optimisation problems (DCOPs). Using a potential game characterisation of DCOPs, we decompose eight DCOP algorithms, taken from the game theory and computer science literatures, into their salient components. We then use these components to construct three novel hybrid algorithms. Finally, we empirical evaluate all eleven algorithms, in terms of solution quality, timeliness and communication resources used, in a series of graph colouring experiments. Our experimental results show the existence of several performance trade-offs (such as quick convergence to a solution, but with a cost of high communication needs), which may be exploited by a system designer to tailor a DCOP algorithm to suit their mix of requirements.  相似文献   

5.
多Agent协作过程中的许多挑战都可以建模为分布式约束优化问题.针对低约束密度的分布式约束优化问题,提出了一种基于贪婪和回跳思想的求解算法.在该算法中,各Agent基于贪婪原则进行决策,能够利用低约束密度问题中大量赋值组合代价为0这一特点来加快求解速度.同时,Agent间的回跳机制可以在贪婪原则陷入局部最优时保证算法的完全性.相对于已有主流算法,该算法可以在保持多项式级别的消息长度/空间复杂度的前提下,以较少的消息数目求解低约束密度的分布式约束优化问题.给出了算法关键机制的正确性证明,并通过实验验证了算法的上述性能优势.  相似文献   

6.

Prior algorithms on graph simulation for distributed graphs are not scalable enough as they exhibit heavy message passing. Moreover, they are dependent on the graph partitioning quality that can be a bottleneck due to the natural skew present in real-world data. As a result, their degree of parallelism becomes limited. In this paper, we propose an efficient parallel edge-centric approach for distributed graph pattern matching. We design a novel distributed data structure called ST that allows a fine-grain parallelism, and hence guarantees linear scalability. Based on ST, we develop a parallel graph simulation algorithm called PGSim. Furthermore, we propose PDSim, an edge-centric algorithm that efficiently evaluates dual simulation in parallel. PDSim combines ST and PGSim in a Split-and-Combine approach to accelerate the computation stages. We prove the effectiveness and efficiency of these propositions through theoretical guarantees and extensive experiments on massive graphs. The achieved results confirm that our approach outperforms existing algorithms by more than an order of magnitude.

  相似文献   

7.
The aim of this article is to bring forth the issue of integrating the services provided by intelligent artifacts in Ambient Intelligence applications. Specifically, we propose a Distributed Constraint Optimization procedure for achieving a functional integration of intelligent artifacts in a smart home. To this end, we employ Adopt-N , a state-of-the-art algorithm for solving Distributed Constraint Optimization Problems (DCOP). This article attempts to state the smart home coordination problem in general terms, and provides the details of a DCOP-based approach by describing a case study taken from the RoboCare project. More specifically, we show how (1) DCOP is a convenient metaphor for casting smart home coordination problems, and (2) the specific features which distinguish Adopt-N from other algorithms for DCOP represent a strong asset in the smart home domain.  相似文献   

8.
In multiparty collaborative data mining, participants contribute their own data sets and hope to collaboratively mine a comprehensive model based on the pooled data set. How to efficiently mine a quality model without breaching each party's privacy is the major challenge. In this paper, we propose an approach based on geometric data perturbation and data mining service-oriented framework. The key problem of applying geometric data perturbation in multiparty collaborative mining is to securely unify multiple geometric perturbations that are preferred by different parties, respectively. We have developed three protocols for perturbation unification. Our approach has three unique features compared to the existing approaches: 1) with geometric data perturbation, these protocols can work for many existing popular data mining algorithms, while most of other approaches are only designed for a particular mining algorithm; 2) both the two major factors: data utility and privacy guarantee are well preserved, compared to other perturbation-based approaches; and 3) two of the three proposed protocols also have great scalability in terms of the number of participants, while many existing cryptographic approaches consider only two or a few more participants. We also study different features of the three protocols and show the advantages of different protocols in experiments.  相似文献   

9.
In this paper, we consider multi-agent constraint systems with preferences, modeled as soft constraint systems in which variables and constraints are distributed among multiple autonomous agents. We assume that each agent can set some preferences over its local data, and we consider two different criteria for finding optimal global solutions: fuzzy and Pareto optimality. We propose a general graph-based framework to describe the problem to be solved in its generic form. As a case study, we consider a distributed meeting scheduling problem where each agent has a pre-existing schedule and the agents must decide on a common meeting that satisfies a given optimality condition. For this scenario we consider the topics of solution quality, search efficiency, and privacy loss, where the latter pertains to information about an agent's pre-existing meetings and available time-slots. We also develop and test strategies that trade efficiency for solution quality and strategies that minimize information exchange, including some that do not require inter-agent comparisons of utilities. Our experimental results demonstrate some of the relations among solution quality, efficiency, and privacy loss, and provide useful hints on how to reach a tradeoff among these three factors. In this work, we show how soft constraint formalisms can be used to incorporate preferences into multi-agent problem solving along with other facets of the problem, such as time and distance constraints. This work also shows that the notion of privacy loss can be made concrete so that it can be treated as a distinct, manipulable factor in the context of distributed decision making.  相似文献   

10.
Standard algorithms for association rule mining are based on identification of frequent itemsets. In this paper, we study how to maintain privacy in distributed mining of frequent itemsets. That is, we study how two (or more) parties can find frequent itemsets in a distributed database without revealing each party’s portion of the data to the other. The existing solution for vertically partitioned data leaks a significant amount of information, while the existing solution for horizontally partitioned data only works for three parties or more. In this paper, we design algorithms for both vertically and horizontally partitioned data, with cryptographically strong privacy. We give two algorithms for vertically partitioned data; one of them reveals only the support count and the other reveals nothing. Both of them have computational overheads linear in the number of transactions. Our algorithm for horizontally partitioned data works for two parties and above and is more efficient than the existing solution.  相似文献   

11.
DCSP和DCOP求解研究进展   总被引:1,自引:0,他引:1  
贺利坚  张伟  石纯一 《计算机科学》2007,34(11):132-136
分布式约束满足问题(DCSP)和分布式约束最优问题(DCOP)的研究是分布式人工智能领域的基础性工作。本文首先介绍了卿和DCOP的形式化描述及对实际应用问题的建模方法。在DCSP和DCOP的求解中,通常对问题要进行限制和要求,同时要满足分布性、异步性、局部性、完备性的原则。异步回溯(ABT)、异步弱承诺搜索(AWC)和分布式逃逸(DB)算法是求解DCSP的有代表性的算法;DCSP算法对DCOP求解产生了影响,但由DCSP一般化到DCOP的算法,仅适用于解决部分特定的问题,DCOP的最优、异步算法有异步分布式约束最优算法(A—dopt)和最优异步部分交叉算法(OptAPO)。本文讨论了上述算法的性能。相关的研究工作在多局部变量的处理、超约束DCSP、算法性能度量、通信的保密等方面进行了扩充,在对问题本身的研究、建模方法学、算法、与其他方法的结合以及拓展应用领域等方面仍有许多问题需要进一步研究。  相似文献   

12.
Distributed Constraint Optimization Problems (DCOPs) are widely used in Multi-Agent Systems for coordination and scheduling. The present paper proposes a heuristic algorithm that uses probabilistic assessment of the optimal solution in order to quickly find a solution that is not far from the optimal one. The heuristic assessment uses two passes by the agents to produce a high-quality solution. Extensive performance evaluation demonstrates that the solution of the proposed probabilistic assessment algorithm is indeed very close to the optimum, on smaller problems where this could be measured. In larger set-ups, the quality of the solution is demonstrated relatively to standard incomplete search algorithms.  相似文献   

13.
14.
15.
Differential privacy enables sensitive data to be analyzed in a privacy-preserving manner. In this paper, we focus on the online setting where each analyst is assigned a privacy budget and queries the data interactively. However, existing differentially private data analytics systems such as PINQ process each query independently, which may cause an unnecessary waste of the privacy budget. Motivated by this, we present a satisfiability modulo theories (SMT)-based query tracking approach to reduce the privacy budget usage. In brief, our approach automatically locates past queries that access disjoint parts of the dataset with respect to the current query to save the privacy cost using the SMT solving techniques. To improve efficiency, we further propose an optimization based on explicitly specified column ranges to facilitate the search process. We have implemented a prototype of our approach with Z3, and conducted several sets of experiments. The results show our approach can save a considerable amount of the privacy budget and each query can be tracked efficiently within milliseconds.  相似文献   

16.

Dynamic island models are population-based algorithms for solving optimization problems, where the individuals of the population are distributed on islands. These subpopulations of individuals are processed by search algorithms on each island. In order to share information within this distributed search process, the individuals migrate from their initial island to another destination island at regular steps. In dynamic island models, the migration process evolves during the search according to the observed performance on the different islands. The purpose of this dynamic/adaptive management of the migrations is to send the individuals to the most promising islands, with regards to their current states. Therefore, our approach is related to the adaptive management of search operators in evolutionary algorithms. In this work, our main purpose is thus to precisely analyze dynamic migration policies. We propose a testing process that assigns gains to the algorithms applied on the islands in order to assess the adaptive ability of the migration policies, with regards to various scenarios. Instead of having one dynamic migration policy that is applied to the whole search process, as it has already been studied, we propose to associate a migration policy to each individual, which allows us to combine simultaneously different migration policies.

  相似文献   

17.
This article presents an asynchronous algorithm for solving distributed constraint optimization problems (DCOPs). The proposed technique unifies asynchronous backtracking (ABT) and asynchronous distributed optimization (ADOPT) where valued nogoods enable more flexible reasoning and more opportunities for communication, leading to an important speed-up. While feedback can be sent in ADOPT by COST messages only to one predefined predecessor, our extension allows for sending such information to any relevant agent. The concept of valued nogood is an extension by Dago and Verfaille of the concept of classic nogood that associates the list of conflicting assignments with a cost and, optionally, with a set of references to culprit constraints. DCOPs have been shown to have very elegant distributed solutions, such as ADOPT, distributed asynchronous overlay (DisAO), or DPOP. These algorithms are typically tuned to minimize the longest causal chain of messages as a measure of how the algorithms will scale for systems with remote agents (with large latency in communication). ADOPT has the property of maintaining the initial distribution of the problem. To be efficient, ADOPT needs a preprocessing step consisting of computing a Depth-First Search (DFS) tree on the constraint graph. Valued nogoods allow for automatically detecting and exploiting the best DFS tree compatible with the current ordering. To exploit such DFS trees it is now sufficient to ensure that they exist. Also, the inference rules available for valued nogoods help to exploit schemes of communication where more feedback is sent to higher priority agents. Together they result in an order of magnitude improvement.  相似文献   

18.
Let us consider the following situation: \(t\) entities (e.g., hospitals) hold different databases containing different records for the same type of confidential (e.g., medical) data. They want to deliver a protected version of this data to third parties (e.g., pharmaceutical researchers), preserving in some way both the utility and the privacy of the original data. This can be done by applying a statistical disclosure control (SDC) method. One possibility is that each entity protects its own database individually, but this strategy provides less utility and privacy than a collective strategy where the entities cooperate, by means of a distributed protocol, to produce a global protected dataset. In this paper, we investigate the problem of distributed protocols for SDC protection methods. We propose a simple, efficient and secure distributed protocol for the specific SDC method of rank shuffling. We run some experiments to evaluate the quality of this protocol and to compare the individual and collective strategies for solving the problem of protecting a distributed database. With respect to other distributed versions of SDC methods, the new protocol provides either more security or more efficiency, as we discuss through the paper.  相似文献   

19.
Anonymization is a practical approach to protect privacy in data. The major objective of privacy preserving data publishing is to protect private information in data whereas data is still useful for some intended applications, such as building classification models. In this paper, we argue that data generalization in anonymization should be determined by the classification capability of data rather than the privacy requirement. We make use of mutual information for measuring classification capability for generalization, and propose two k-anonymity algorithms to produce anonymized tables for building accurate classification models. The algorithms generalize attributes to maximize the classification capability, and then suppress values by a privacy requirement k (IACk) or distributional constraints (IACc). Experimental results show that algorithm IACk supports more accurate classification models and is faster than a benchmark utility-aware data anonymization algorithm.  相似文献   

20.
This paper explores the macro data flow approach for solving numerical applications on distributed memory systems. We discuss the problems of this approach with a sophisticated ‘real life’ algorithm—the adaptive full multigrid method.

It is shown that the nonnumeric parts of the algorithm—the initialization, the termination and the mapping of processes to processors—are very important for the overall performance.

To avoid unnecessary global synchronization points we propose to use the distributed supervisors. We compare this solution with more centralized algorithms. The performance evaluation is done for nearest neighbour and bus connected multiprocessors using a simulation systems.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号