共查询到20条相似文献,搜索用时 0 毫秒
1.
Multimedia Tools and Applications - This paper addresses the demand for an intelligent and rapid classification system of skin cancer using contemporary highly-efficient deep convolutional neural... 相似文献
2.
The Journal of Supercomputing - The exponential growth of computer networks and the adoption of new network-based technologies have made computer security an important challenge. With the emergence... 相似文献
3.
Several studies have been conducted for automatic classification of sleep stages to ease time-consuming manual scoring process that can involve a high degree of experience and subjectivity. But none of them has found a practical usage in medical area so far because of their under acceptable success rates. In this study, a different classification scheme is proposed to increase the success rate in automatic sleep stage scoring in which sleep stages were classified as Awake, Non-REM1, Non-REM2, Non-REM3 and REM stages. Using EEG, EMG and EOG recordings of five healthy subjects, a modified version of sequential feature selection method was applied to the sleep epochs in class by class basis and different artificial neural network (ANN) architectures were trained for each class. That is to say, sleep stages were classified with five ANN architectures each of which uses different features and different network parameters for classification. The highest classification accuracy was obtained for REM sleep as 95.13 % in addition to the lowest classification accuracy of 86.42 % for Non-REM3 sleep. The overall accuracy, on the other hand, was recorded as 90.93 %, which is a comparatively good result when the other studies using all stages are taken into account. 相似文献
4.
Multimedia Tools and Applications - Breast tumor is one of the major cause of death among women all over the world. Ultrasound imaging-based breast abnormality detection and classification play a... 相似文献
5.
Neural Computing and Applications - In this study, a new deep learning-based approach has been developed that detects and classifies surface defects that occur in the steel production process. The... 相似文献
6.
Fuzzy neural networks (FNNs) for pattern classification usually use the backpropagation or C-cluster type learning algorithms to learn the parameters of the fuzzy rules and membership functions from the training data. However, such kinds of learning algorithms usually cannot minimize the empirical risk (training error) and expected risk (testing error) simultaneously, and thus cannot reach a good classification performance in the testing phase. To tackle this drawback, a support-vector-based fuzzy neural network (SVFNN) is proposed for pattern classification in this paper. The SVFNN combines the superior classification power of support vector machine (SVM) in high dimensional data spaces and the efficient human-like reasoning of FNN in handling uncertainty information. A learning algorithm consisting of three learning phases is developed to construct the SVFNN and train its parameters. In the first phase, the fuzzy rules and membership functions are automatically determined by the clustering principle. In the second phase, the parameters of FNN are calculated by the SVM with the proposed adaptive fuzzy kernel function. In the third phase, the relevant fuzzy rules are selected by the proposed reducing fuzzy rule method. To investigate the effectiveness of the proposed SVFNN classification, it is applied to the Iris, Vehicle, Dna, Satimage, Ijcnn1 datasets from the UCI Repository, Statlog collection and IJCNN challenge 2001, respectively. Experimental results show that the proposed SVFNN for pattern classification can achieve good classification performance with drastically reduced number of fuzzy kernel functions. 相似文献
7.
Multimedia Tools and Applications - Deep Neural Network (DNN) models have lately received considerable attention for that the network structure can extract deep features to improve classification... 相似文献
8.
Multimedia Tools and Applications - Tuberculosis (TB) is an infectious disease that mainly affects the lung region. Its initial screening is mostly performed using chest radiograph, which is also... 相似文献
9.
Diagnosis, detection and classification of tumors, in the brain MRI images, are important because misdiagnosis can lead to death. This paper proposes a method that can diagnose brain tumors in the MRI images and classify them into 5 categories using a Convolutional Neural Network (CNN). The proposed network uses a Convolutional Auto-Encoder Neural Network (CANN) to extract and learn deep features of input images. Extracted deep features from each level are combined to make desirable features and improve results. To classify brain tumor into three categories (Meningioma, Glioma, and Pituitary) the proposed method was applied on Cheng dataset and has reached a considerable performance accuracy of 99.3%. To diagnosis and grading Glioma tumors, the proposed method was applied on IXI and BraTS 2017 datasets, and to classify brain images into six classes including Meningioma, Pituitary, Astrocytoma, High-Grade Glioma, Low-Grade Glioma and Normal images (No tumor), the all datasets including IXI, BraTS2017, Cheng and Hazrat-e-Rassol, was used by the proposed network, and it has reached desirable performance accuracy of 99.1% and 98.5%, respectively. 相似文献
10.
Multi-class pattern classification has many applications including text document classification, speech recognition, object recognition, etc. Multi-class pattern classification using neural networks is not a trivial extension from two-class neural networks. This paper presents a comprehensive and competitive study in multi-class neural learning with focuses on issues including neural network architecture, encoding schemes, training methodology and training time complexity. Our study includes multi-class pattern classification using either a system of multiple neural networks or a single neural network, and modeling pattern classes using one-against-all, one-against-one, one-against-higher-order, and P-against- Q. We also discuss implementations of these approaches and analyze training time complexity associated with each approach. We evaluate six different neural network system architectures for multi-class pattern classification along the dimensions of imbalanced data, large number of pattern classes, large vs. small training data through experiments conducted on well-known benchmark data. 相似文献
11.
The Journal of Supercomputing - Social media platforms have simplified the sharing of information, which includes news as well, as compared to traditional ways. The ease of access and sharing the... 相似文献
12.
Neural networks have been applied to landmine detection from data generated by different kinds of sensors. Real-valued neural networks have been used for detecting landmines from scattering parameters measured by ground penetrating radar (GPR) after disregarding phase information. This paper presents results using complex-valued neural networks, capable of phase-sensitive detection followed by classification. A two-layer hybrid neural network structure incorporating both supervised and unsupervised learning is proposed to detect and then classify the types of landmines. Tests are also reported on a benchmark data. 相似文献
13.
Multimedia Tools and Applications - The accurate separation of ECG signals has become crucial to identify heart diseases. Machine learning methods are widely used to separate ECG signals. The aim... 相似文献
14.
Retinopathy of prematurity (ROP) is a retinal vascular proliferative disease principally observed in infants born prematurely with low birth weight. ROP is the leading cause of childhood blindness. Early screening and timely treatment are crucial in preventing ROP blindness. Previous ROP diagnosis lacks clear understanding of the underlying factors and properties that supports the final decision. For this reason, a deep convolutional neural network (DCNN) is developed for automated ROP detection using wide-angle retinal images. Specifically, we first choose ResNet50 as our base architecture and improve the ResNet by adding a channel and a spatial attention module. Then, we utilize a class-discriminative localization technique (i.e., gradient-weighted class activation mapping (Grad-CAM)) to visualize the trained models and realize pathological structure localization. The efficacy of the proposed network is evaluated on two test datasets. Our method obtains a sensitivity of 94.84 ? % and a specificity of 99.49 ? % on test set 1 while a sensitivity of 98.03 ? % and a specificity of 94.55 ? % on test set 2. Also, the model successfully detects the pathological structures of ROP (e.g., demarcation lines or ridges) in the retina images. 相似文献
15.
显著性检测在图像处理领域应用广泛,当前显著性检测主要有自底而上与自顶而下及一些相关或改进算法,它们各有优势和缺陷。提出了一种基于卷积神经网络的显著性检测算法,利用卷积神经网络在图像处理方面强大的功能提取图像特征,进行特征融合,最后得到显著性图,用于显著性检测。将本文方法与传统的显著性检测方法进行对比,发现本文方法效果显著。 相似文献
16.
The gene activities in T lymphocytes that regulate immune responses are influenced by Ca/sup 2+/ ([Ca/sup 2+/]/sub i/). The intracellular calcium signals are highly heterogeneous and vitally important in determining the immune outcome. The signals in individual cells can be measured using fluorescence microscopy but to group the cells into classes with similar signal kinetics is currently laborious. Here, we demonstrate a method for the automated classification of the responses into four categories formerly identified by an expert's inspection. This method comprises characterising the response by a second-order model, performing frequency analysis, and using derived features as inputs to two multilayer perceptron neural networks (NNs). We compare the algorithm's performance on an example data set against the human classification: it was found to classify identically more than 70% of the data, despite small sample sizes in two categories and significant overlap between the other two classes. The group characterized by an oscillating signal showed the presence of a number of frequencies, which may be important in determining gene activation. A classification threshold enables the automatic identification of patterns with a low-classification certainty. Future refinement of the algorithm may allow the identification of more classes, which may be important in different immune responses associated with disease. 相似文献
17.
A study was conducted to investigate the ability of a neural network based classification technique to delineate upland and forested wetland areas and to distinguish between different levels of wetness in a forested wetland. NASA's Airborne Terrestrial Applications Sensor (ATLAS) multi-spectral data and Airborne Imaging Radar Synthetic Aperture Radar (AIRSAR) data were used in this study. A National Wetland Inventory (NWI) map served as a reference. Cascade-correlation, a feed-forward neural network architecture, was employed as the classifier. The neural network technique separated upland from wetland spectral signatures and discriminated two out of four different water regimes identified by the NWI within the wetland area. The relative usefulness of ATLAS and AIRSAR data for wetness classification was also investigated. It was found that both data sources, when used in isolation, could separate wetland from upland about equally well, but better performance was observed when these data sources were combined. 相似文献
18.
Multimedia Tools and Applications - In recent decades, wild animal classification from the video sequence is considered the trending research domain. Existing techniques utilize image processing... 相似文献
19.
This paper presents a cooperative coevolutive approach for designing neural network ensembles. Cooperative coevolution is a recent paradigm in evolutionary computation that allows the effective modeling of cooperative environments. Although theoretically, a single neural network with a sufficient number of neurons in the hidden layer would suffice to solve any problem, in practice many real-world problems are too hard to construct the appropriate network that solve them. In such problems, neural network ensembles are a successful alternative. Nevertheless, the design of neural network ensembles is a complex task. In this paper, we propose a general framework for designing neural network ensembles by means of cooperative coevolution. The proposed model has two main objectives: first, the improvement of the combination of the trained individual networks; second, the cooperative evolution of such networks, encouraging collaboration among them, instead of a separate training of each network. In order to favor the cooperation of the networks, each network is evaluated throughout the evolutionary process using a multiobjective method. For each network, different objectives are defined, considering not only its performance in the given problem, but also its cooperation with the rest of the networks. In addition, a population of ensembles is evolved, improving the combination of networks and obtaining subsets of networks to form ensembles that perform better than the combination of all the evolved networks. The proposed model is applied to ten real-world classification problems of a very different nature from the UCI machine learning repository and proben1 benchmark set. In all of them the performance of the model is better than the performance of standard ensembles in terms of generalization error. Moreover, the size of the obtained ensembles is also smaller. 相似文献
20.
Artificial neural networks have been shown to perform well in many image processing applications such as coding, pattern recognition and texture segmentation. In a typical multi-layer model of this class, neurons in each layer are linked by synaptic weights to a receptive field region in the layer below it. The input image itself is linked to the lowest layer. We propose here a two stage encoder-detector network for edge detection. The single layer encoder stage, trained in a competitive mode, compresses data from an input receptive field and drives a back-propagation-trained detector network whose two outputs represent components of an edge vector. Experimental results show that for the case of step edges in noisy images, the performance of the neural edge detector is comparable to that of the Canny detector. 相似文献
|