首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sputtering technique for Cu–In precursor films fabrication using different Cu and In layer sequences have been widely investigated for CuInSe2 production. But the CuInSe2 films fabricated from these precursors using H2Se or Se vapour selenization mostly exhibited poor microstructural properties. The co-sputtering technique for producing Cu–In alloy films and selenization within a close-spaced graphite box resulting in quality CuInSe2 films was developed. All films were analysed using SEM, EDX, XRD and four-point probe measurements. Alloy films with a broad range of compositions were fabricated and XRD showed mainly In, CuIn2 and Cu11In9 phases which were found to vary in intensities as the composition changes. Different morphological properties were displayed as the alloy composition changes. The selenized CuInSe2 films exhibited different microstructural properties. Very In-rich films yielded the ODC compound with small crystal sizes whilst slightly In-rich or Cu-rich alloys yielded single phase CuInSe2 films with dense crystals and sizes of about 5 μm. Film resistivities varied from 10−2–108 Ω cm. The films had compositions with Cu/In of 0.40–2.3 and Se/(Cu+In) of 0.74–1.35. All CuInSe2 films with the exception of very Cu-rich ones contained high amount of Se (>50%).  相似文献   

2.
CuInSe2 thin films were formed from the selenization of co-sputtered Cu–In alloy layers. These layers consisted of only two phases, CuIn2 and Cu11In9, over broad Cu–In composition ratio. The concentration of Cu11In9 phase increased by varying the composition from In-rich to Cu-rich. The composition of co-sputtered Cu–In alloy layers was linearly dependent on the sputtering power of Cu and In targets. The metallic layers were selenized either at a low pressure of 10 mTorr or at 1 atm Ar. A small number of Cu–Se and In–Se compounds were observed during the early stage of selenization and single-phase CuInSe2 was more easily formed in vacuum than at 1 atm Ar. Therefore, CuInSe2 films selenized in vacuum showed smoother surface and denser microstructure than those selenized at 1 atm. The results showed that CuInSe2 films selenized in vacuum had good properties suitable for a solar cell.  相似文献   

3.
CuInSe2 and CuIn3Se5 thin films have been deposited using sodium compounds such as Na2Se and Na2S onto Corning 7059 glass substrates by the two-stage co-evaporation method. Enhanced grain growth and preferred (1 1 2) grain orientation as well as a decrease in resistivity with respect to undoped films were observed with sodium incorporation. A clear correlation between the photoluminescence spectra and the resistivity of the films was found by comparing the properties of films with and without Na incorporation. These observations suggest that compensation is reduced due to the suppression of donor-type defects by the presence of Na.  相似文献   

4.
Optical transitions near the fundamental band edge are studied for CuInSe2 films having various Cu/In ratios by analysing the variations of the absorption coefficient with incident photon energy. The results indicate different transitions depending upon the Cu/In ratio. There are sub-bandgap absorption for near stoichiometric and Cu-rich films. The results are compared to some literature data.  相似文献   

5.
The electrodeposition of CuInSe2 is investigated to improve the stoichiometric properties of CuInSe2 layers on indium tin oxide (ITO)-coated glass substrates and to develop one-step electrodeposition method for solar cell applications. XPS was utilized for the characterization of the surface properties of CuInSe2 layers. The influence of the complexing agent, e.g. benzotriazole, bulk concentration of Cu and Se and deposition potentials on the stoichiometric properties, are discussed.  相似文献   

6.
A simple close-spaced vapour transport (CSVT) system has been designed and fabricated. Copper indium diselenide (CuInSe2) thin films of wide range of thickness (4000–60000 Å) have been prepared using the fabricated CSVT system at source temperatures 713, 758 and 843 K. A detailed study on the deposition temperature has been made and the temperature profile along with the reaction kinetics is reported. The composition of the chemical constituents of the films has been determined by energy dispersive X-ray analysis. The structural characterization of the as-deposited CuInSe2 films of various thicknesses has been carried out by X-ray diffraction method. The diffractogram revealed that the CuInSe2 films are polycrystalline in nature with chalcopyrite structure. The structural parameters such as lattice constants, axial ratio, tetragonal distortion, crystallite size, dislocation density and strain have been evaluated and the results are discussed. The surface morphology of the as-deposited CuInSe2 thin films has been studied using scanning electron microscope. The transmittance characteristics of the CuInSe2 films have been studied using double beam spectrophotometer in the wavelength range 4000–15000 Å and the optical constants n and k are evaluated. The absorption coefficient has been found to be very high and is of the order of 105–106 m−1. CuInSe2 films are found to have a direct allowed transition and the optical band gap is found to be in the range 0.85–1.05 eV.  相似文献   

7.
Thin films of compound CuInSe2 have been developed onto glass substrates by in situ thermal annealing of the stack of successively evaporated elemental layers in vacuum. The atomic compositions and the optical properties of the films have been determined by proton-induced X-ray emission (PIXE) method and spectrophotometry in the photon wavelength range of 300–2500 nm, respectively. The typical optical absorption characteristic of the films has been critically analysed. The absorption coefficients vary from 103 to 105 cm−1 in the measured wavelength range. The films have more than one type of fundamental electronic transitions. Direct allowed and direct forbidden transitions vary between 0.947 to 0.989 eV and 1.099 to 1.204 eV, respectively, depending on the composition of the films. The former transition varies inversely with the Cu/In ratio while the latter shows no such dependence. Valence band splittings due to spin–orbit coupling converge towards the single-crystal value for the near-stoichiometric (NS) and Cu-rich films.  相似文献   

8.
In this study, we report the results obtained from the auger electron spectroscopy (AES) depth profiling of CIS thin films grown by the electrodeposition technique. This result enables one to do a comparison between the bulk and superficial elemental compositions. The AES result is also compared with that obtained by the inductively coupled plasma (ICP) spectroscopy. These results support our proposition that the electrodeposited CIS film has a Cu-rich bulk region and an In rich surface, which leads to the formation of an n-layer (CuIn2Se3.5) on the top of the p-type CIS (CuInSe2) phase  相似文献   

9.
CuInSe2 films were electrodeposited on mechanical polished Mo substrates. The applied potential was adjusted to get a stoichiometric composition. The as-deposited films were annealed in a high vacuum system for a short time. The films have been characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, Auger electron spectroscopy. The results indicate that the crystallization of the films was greatly improved by the short time vacuum annealing process without significant change in composition. The capacitance–voltage measurement shows characteristic p-type behaviors. This annealing process after electrodeposition was proved to be a useful method to prepare the polycrystalline CuInSe2 films for solar cell application.  相似文献   

10.
The effects of Cl ion implantation on the properties of CuInSe2 epitaxial thin films have been investigated. Using five kinds of accelerating energies, the doped layer with a constant profile of Cl concentration along the depth direction was fabricated. From the results of reflection of high-energy electron diffraction, the damages due to implantation were removed by annealing at 400°C in N2. The conductivity type in all implanted films was n-type, and the carrier concentration was increased with increasing Cl concentration in the thin films. Consequently, it is considered that Cl acts as a donor in CuInSe2.  相似文献   

11.
In this article, we present results of a detailed real-time X-ray diffraction (XRD) study on the formation of CuInSe2 from electroplated precursors. The solid-state reactions observed during the selenisation of three different types of precursors are presented. The first type of precursors (I) consists of the nanocrystalline phases Cu2−xSe and InSe at room temperature, which react to CuInSe2 starting at 470 K. The second type of precursor (II) shows an inhibited CuInSe2 formation out of the initial phases Cu2−xSe and γ-In2Se3 starting at 400 K. The third precursor type (III) shows completely different selenisation behaviour. Starting from the intermetallic compound Cu11In9 and amorphous selenium, the formation of the binary selenides In4Se3 and CuSe is observed after the melting point of selenium at 494 K. After selenium transfer reactions, the compound semiconductor CuInSe2 is formed out of Cu2−xSe and InSe. This type (III) reaction path is well known for the selenisation of SEL precursors (stacked elemental layers of sputtered copper and indium and thermally evaporated selenium).  相似文献   

12.
SILAR deposition of CuInSe2 films was performed by using Cu2+–TEAH3 (cupric chloride and triethanolamine) and In3+–CitNa (indium chloride and sodium citrate) chelating solutions with weak basic pH as well as Na2SeSO3 solution at 70 °C. A separate mode and a mixed one of cationic precursor solutions were adopted to investigate effects of the immersion programs on crystallization, composition and morphology of the deposited CuInSe2 films. Chelating chemistry in two solution modes was deducted based on IR measurement. The XRD, XPS and SEM results showed that well-crystallized, smoothly and distinctly particular CuInSe2 films could be obtained after annealing in Ar at 400 °C for 1 h by using the mixed cationic solution mode.  相似文献   

13.
By sulfurization of E---B evaporated precursors, CZTS(Cu2ZnSnS4) films could be prepared successfully. This semiconductor does not consist of any rare-metal such as In. The X-ray diffraction pattern of CZTS thin films showed that these films had a stannite structure. This study estimated the optical band gap energy as 1.45 eV. The optical absorption coefficient was in the order of 104cm−1. The resistivity was in the the order of 104 Ω cm and the conduction type was p-type. Fabricated solar cells, Al/ZnO/CdS/CZTS/Mo/Soda Lime Glass, showed an open-circuit voltage up to 400 mV.  相似文献   

14.
Radiation damages due to 8 MeV electron irradiation in electrical properties of CuInSe2 thin films have been investigated. The n-type CuInSe2 films in which the carrier concentration was about 3×1016 cm−3, were epitaxially grown on a GaAs(0 0 1) substrate by RF diode sputtering. No significant change in the electrical properties was observed under the electron fluence <3×1016 e cm−2. As the electron fluence exceeded 1017 e cm−2, both the carrier concentration and Hall mobility slightly decreased. The carrier removal rate was estimated to be about 0.8 cm−1, which is slightly lower than that of III–V compound materials.  相似文献   

15.
Cu2Se/InxSe(x≈1) double layers were prepared by sequentially evaporating In2Se3 and Cu2Se binary compounds at room temperature on glass or Mo-coated glass substrates and CuInSe2 films were formed by annealing them in a Se atmosphere at 550°C in the same vacuum chamber. The InxSe thickness was fixed at 1 μm and the Cu2Se thickness was varied from 0.2 to 0.5 μm. The CuInSe2 films were single phase and the compositions were Cu-rich when the Cu2Se thickness was above 0.35 μm. And then, a thin CuIn3Se5 layer was formed on the top of the CuInSe2 film by co-evaporating In2Se3 and Se at 550°C. When the thickness of CuIn3Se5 layer was about 150 nm, the CuInSe2 cell showed the active area efficiency of 5.4% with Voc=286 mV, Jsc=36 mA/cm2 and FF=0.52. As the CuIn3Se5 thickness increased further, the efficiency decreased.  相似文献   

16.
CuInSe2 (CIS) thin films with a range of Cu/In ratios were grown by molecular beam epitaxy on GaAs (0 0 1) at substrate temperatures of Ts = 450–500°C and the effects of annealing under various atmospheres have been investigated. Photoluminescence spectra obtained from an ex-situ vacuum annealed CIS film at a temperature of TA = 350°C showed a red-shift and a broadening of an emission peak (peak c) which originally appeared at 0.970 eV before annealing and the red-shifted peak c was found to consist of two overlapping peaks. The excitation power dependence of these overlapping peaks indicated the radiative recombination processes associated with the emissions to be a conduction band to acceptor transition (peak at 0.970 eV) and a transition due to donor-acceptor pairs (peak at 0.959 eV), indicating the formation of a shallow donor-type defect during the vacuum annealing process. The origin of this defect has tentatively been attributed to Se vacancies. On the other hand, the molar fraction of oxygen increased with increasing annealing temperature in dry-air. An epitaxially grown In2O3 phase was found both in Cu-rich and In-rich films annealed at TA 350°C, which was not observed in the films annealed in Ar atmosphere. Thermodynamic calculations based on the Cu---In---Se---O---N system showed In2O3 to be the most stable phase in good agreement with the experimental results.  相似文献   

17.
The dielectric function of CuInSe2 has been studied for various composition ratios of Cu/In. The crystals were cut from ingots of 10 mm diameter and 40 mm length, grown by the classical Bridgman method. Spectroscopic ellipsometry measurements have been performed at room temperature in the range of 1.5–5.5 eV. From the measured spectra of the imaginary part of the dielectric function 2, the broadening effect of the Cu/In ratio has been examined in connection with photoluminescence measurements. All transition edges were found to broaden as the In content increases. The effect of copper d levels has been observed to dominate in the 2.5–3.5 eV range.  相似文献   

18.
We present results from real-time X-ray diffraction experiments on the formation of CuInSe2 solar cell absorbers by annealing precursors, produced by simultaneous electrodeposition of copper, indium and selenium. The investigations reveal, that a reduced amount of electrochemically deposited selenium is the decisive parameter in order to realise a chalcopyrite formation behaviour as observed for sputtered stacked elemental layer (SEL) precursors. A simultaneous electrodeposition of the elements copper, indium and selenium in the molar ratio 1:1:2 of the chalcopyrite CuInSe2 leads to the formation of binary copper and indium selenides during the electrodeposition process. The existence of binary selenides besides the intermetallic phase Cu11In9 as initial phases leads to an unfavourable absorber morphology. This can be explained by the observed semiconductor formation mechanism. A reduction of the deposited amount of selenium favours the formation of the intermetallic compound Cu11In9 and reduces the amount of binary selenides. These precursors show a formation behaviour and resulting absorber morphology as known for sputtered SEL precursors.  相似文献   

19.
CuInSe2 thin films were prepared using sequential vacuum evaporation of In, Se and Cu at moderately low substrate temperatures, avoiding any treatment using toxic H2Se gas. The samples were annealed at 400 °C at a pressure of 10−5 mbar to form CuInSe2. Structural, optical, electrical, compositional and morphological characterizations were carried out on these films. We could obtain highly stoichiometric film, using this simple method, without opting for co-evaporation or high substrate temperature for deposition.  相似文献   

20.
Hall-effect and photoluminescence measurements have been carried out on as-grown and In/Ga-annealed CuInSe2 and CuGaSe2 single crystals grown by chemical vapor transport. Various defect levels in these related compounds have been identified and compared. VCu and VSe show similar properties and activation energies in both materials. A tremendous difference is observed in the behavior of IIICu antisite defects. GaCu levels in CuGaSe2 are much deeper than InCu in CuInSe2, and furthermore, the formation of InCu is much easier compared to GaCu. This is related to the higher formation energy of GaCu in CuGaSe2. Due to this difference in the defect chemistry of both compounds, it has not been possible until now, to prepare n-type CuGaSe2 crystals, whereas CuInSe2 is easily transformed from p- to n-type by annealing in vacuum or In-atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号