首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genotoxicity of the most potent carcinogen in cigarette smoke [4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)] is dependent on the relationship between its activation by cytochrome P450 enzymes and its detoxification by carbonyl reduction to NNK alcohol (NNAL) followed by glucuronidation. Recently, '11 beta-hydroxysteroid dehydrogenase' (11 beta-HSD 1) was identified to be responsible for NNK carbonyl reduction. It is now speculated that differences in tissue expression of 11 beta-HSD 1, as well as genetic polymorphisms, may have profound influences on the organospecificity and potency of NNK-induced cancerogenesis. Moreover, endogenous and exogenous substrates or inhibitors of 11 beta-HSD 1 may shift the NNK/NNAL equilibrium and favour NNK toxification in a variety of physiological and therapeutic situations. These issues are discussed here by Edmund Maser, who also describes how recent observations could provide the experimental base for epidemiological or clinical studies, which focus on polymorphisms in 11 beta-HSD 1 enzyme expression, as well as on implications of exposure to 11 beta-HSD 1 modulators and concurrent smoking.  相似文献   

2.
The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent pancreas carcinogen in rats. The biliary excretion of NNK was therefore studied in anesthetized female Sprague-Dawley rats following i.p. administration of 0.7 mumol/kg [carbonyl-14C]NNK. The concentration of radioactivity peaked within 30 min and decreased thereafter exponentially. Cumulative excretion of radioactivity reached a plateau at 6-9% of the total dose. HPLC analysis revealed the presence of 4-hydroxy-4-(3-pyridyl)butyric acid (hydroxy acid), 4-oxo-4-(3-pyridyl)-butyric acid (keto acid), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butyl beta-D-glucopyranosiduronic acid (NNAL Glu), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and NNK. NNAL Glu was the major metabolite contributing 34 +/- 4% of total radioactivity in bile at 30 min and 58 +/- 4% at 5 h. The percentage of acidic metabolites remained constant at approximately 20%. In contrast, the percentage of NNK and NNAL decreased within the first 2 h to < 5% and < 10% respectively. The elimination kinetics of NNK and its metabolites fitted into a one-compartment model with a half-life of 37 min for NNK, 52 min for NNAL and 110 min for NNAL Glu and acidic metabolites. In three rats dosed with 240 mumol/kg NNK i.p., the concentration of radioactivity peaked after 1-2 h and decreased very slowly thereafter. After 5-8 h a total of 12-17% of the dose has been excreted in the bile with no indication of a plateau. At all time points NNAL Glu was the major metabolite contributing up to 95% of total radioactivity in bile. The percentage of acidic metabolites was < 5% throughout the experiment. Whereas NNK contributed one-third of the radioactivity at 30 min and decreased rapidly, the percentage of NNAL in bile remained rather constant at approximately 5-10%. In conclusion, the detection of NNK, NNAL and NNAL Glu gives support to the hypothesis that tobacco-specific carcinogens could reach the pancreas retrograde from the bile, especially at high NNK concentrations.  相似文献   

3.
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent tobacco-specific carcinogen in animals. Our previous studies indicated that there are differences between rodents and humans for the enzymes involved in the activation of NNK. To determine if the patas monkey is a better animal model for the activation of NNK in humans, we investigated the metabolism of NNK in patas monkey lung and liver microsomes and characterized the enzymes involved in the activation. In lung microsomes, the formation of 4-oxo-1-(3-pyridyl)-1-butanone (keto aldehyde), 4-(methylnitrosamino)-1-(3-pyridyl-N-oxide)-1-butanone (NNK-N-oxide), 4-hydroxy-1-(3-pyridyl)-1-butanone (keto alcohol), and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) was observed, displaying apparent Km values of 10.3, 5.4, 4.9, and 902 microM, respectively. NNK metabolism in liver microsomes resulted in the formation of keto aldehyde, keto alcohol, and NNAL, displaying apparent Km values of 8.1, 8.2, and 474 microM, respectively. The low Km values for NNK oxidation in the patas monkey lung and liver microsomes are different from those in human lung and liver microsomes showing Km values of 400-653 microM, although loss of low Km forms from human tissue as a result of disease, surgery or anesthesia cannot be ruled out. Carbon monoxide (90%) significantly inhibited NNK metabolism in the patas monkey lung and liver microsomes by 38-66% and 82-91%, respectively. Nordihydroguaiaretic acid (a lipoxygenase inhibitor) and aspirin (a cyclooxygenase inhibitor) decreased the rate of formation of keto aldehyde and keto alcohol by 10-20 % in the monkey lung microsomes. Alpha-Napthoflavone and coumarin markedly decreased the oxidation of NNK in monkey lung and liver microsomes, suggesting the involvement of P450s 1A and 2A6. An antibody against human P450 2A6 decreased the oxidation of NNK by 12-16% and 22-24% in the patas monkey lung and liver microsomes, respectively. These results are comparable to that obtained with human lung and liver microsomes. Coumarin hydroxylation was observed in the patas monkey lung and liver microsomes at a rate of 16 and 4000 pmol/min/mg protein, respectively, which was 5-fold higher than human lung and liver microsomes, respectively. Immunoblot analysis demonstrated that the P450 2A level in the individual patas monkey liver microsomal sample was 6-fold greater than in an individual human liver microsomal sample. Phenethyl isothiocyanate, an inhibitor of NNK activation in rodents and humans, decreased NNK oxidation in the monkey lung and liver microsomes displaying inhibitor concentration resulting in 50% inhibition of the activity (IC50) values of 0.28-0.8 microM and 4.2-6.8 microM, respectively. The results demonstrate the similarities and differences between species in the metabolic activation of NNK. The patas monkey microsomes appear to more closely resemble human microsomes than mouse or rat enzymes and may better reflect the activation of NNK in humans.  相似文献   

4.
5.
The N-nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent lung carcinogen present in tobacco and tobacco smoke. Carbonyl reduction, alpha-carbon hydroxylation (activation) and N-oxidation of the pyridyl ring (detoxification) are the three main pathways of metabolism of NNK. In this study, metabolism of NNK was studied with lung and liver microsomes from F344 rats, Syrian golden hamsters and pigs and cloned flavin-containing monooxygenases (FMOs) from human and rabbit liver. Thermal inactivation at 45 degrees C for 2 min reduced FMO S-oxygenating activity but did not affect N-oxidation of NNK, leading to the conclusion that FMOs are not implicated in the detoxification of NNK. Detoxification of NNK was not increased by n-octylamine or by incubation at pH 8.4, supporting the conclusion that FMOs are not involved in the metabolism of NNK. SKF-525A (1 mM) significantly reduced N-oxidation and alpha-carbon hydroxylation, suggesting that these two pathways were catalyzed by cytochromes P450. Metabolism of NNK was lower with lung microsomes than with liver microsomes. Inhibition of metabolism of NNK by SKF-525A was also observed with rat lung microsomes, leading to the conclusion that cytochromes P450 are involved in pulmonary metabolism of NNK. Cloned FMOs did not metabolize NNK. In conclusion, cytochromes P450 rather than FMOs are involved in N-oxidation of NNK. The high capacity of hamster liver microsomes to activate NNK does not correlate with the resistance of this tissue to NNK-induced hepatocarcinogenesis.  相似文献   

6.
The effects of administration of low doses of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), a tobacco-specific nitrosamine, were investigated in hamsters treated with N-nitrosobis(2-oxopropyl)amine (BOP). Female Syrian golden hamsters were given a single sc injection of BOP at a dose of 10 mg/kg and then administered 2 or 5 ppm NNAL in their drinking water for 52 wk. Additional groups of animals received the BOP injection alone, or only the 2 or 5 ppm NNAL treatments as BOP-negative controls. At wk 53 of the experiment, all surviving animals were killed and the development of proliferative lesions was assessed histopathologically. The total incidence of combined carcinomatous and dysplastic lesions of the exocrine pancreas was significantly higher (P < 0.05) in the BOP/NNAL 5 ppm group than in the BOP alone group, although there was no statistically significant influence of NNAL on the development of either pancreatic adenocarcinomas or dysplastic lesions viewed singly. The treatments with NNAL alone did not induce any proliferative lesions of the exocrine pancreas. No significant intergroup differences were found in either incidence or multiplicity of islet cell proliferative lesions. Immunohistochemical examination of islet cell proliferative lesions (hyperplasias and adenomas) found in the BOP-treated animals showed no significant differences in pancreatic hormone production between NNAL-treated and -untreated groups. The NNAL treatment did not exert any influence on lung, liver or kidney tumorigenesis. Thus, the results suggest that NNAL enhances BOP-induced exocrine but not endocrine pancreatic tumorigenesis in hamsters when given in the post-initiation phase.  相似文献   

7.
The tobacco-specific nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) both induce nasal tumors in rats and have a common metabolic activation pathway leading to pyridyloxobutylation of DNA. The role of DNA pyridyloxobutylation in rat nasal carcinogenesis has not been evaluated previously. In this study, we used gas chromatography-mass spectrometry to compare levels of 4-hydroxyl-1-(3-pyridyl)-1-butanone-releasing adducts formed by pyridyloxobutylation of rat nasal mucosa DNA after treatment with either NNK, NNN, or deuterated analogues of NNK. The latter were [4,4-D2]NNK, a stronger nasal cavity carcinogen than NNK, and [CD3]NNK, which has carcinogenic activity equivalent to NNK. We also investigated toxicity to the nasal mucosa and levels of O6-methylguanine in the DNA of this tissue in rats treated with NNK and its deuterated analogues. Rats were given three times weekly s.c. injections of the respective nitrosamines for 4 weeks and then sacrificed 24 h after the final injection. The nasal mucosa was separated into the olfactory and respiratory portions. In the rats treated with [4,4-D2]NNK, levels of O6-methylguanine in DNA from both the olfactory and respiratory portions of the nasal mucosa were significantly lower and levels of 4-hydroxy-1-(3-pyridyl)-1-butanone-releasing DNA adducts higher than in the rats treated with equivalent doses of the less carcinogenic compounds NNK or [CD3]NNK. 4-Hydroxy-1-(3-pyridyl)-1-butanone-releasing adducts were also detected in the nasal mucosa DNA of the rats treated with NNN. In the comparative study of NNK and its deuterated analogues, the histology of the nasal mucosa did not appear to be markedly different among these groups. Collectively, the results of this study provide strong evidence that DNA pyridyloxobutylation is important in rat nasal cavity carcinogenesis by NNK and NNN.  相似文献   

8.
CONTEXT: Racial differences in tobacco-related diseases are not fully explained by cigarette-smoking behavior. Despite smoking fewer cigarettes per day, blacks have higher levels of serum cotinine, the proximate metabolite of nicotine. OBJECTIVE: To compare the rates of metabolism and the daily intake of nicotine in black smokers and white smokers. DESIGN: Participants received simultaneous infusions of deuterium-labeled nicotine and cotinine. Urine was collected for determination of total clearance of nicotine and cotinine, fractional conversion of nicotine to cotinine, and cotinine elimination rate. Using cotinine levels during ad libitum smoking and clearance data, the daily intake of nicotine from smoking was estimated. SETTING: Metabolic ward of a university-affiliated public hospital. PARTICIPANTS: A total of 40 black and 39 white smokers, average consumption of 14 and 14.7 cigarettes per day, respectively, of similar age (mean, 32.5 and 32.3 years, respectively) and body weight (mean, 73.3 and 68.8 kg, respectively). MAIN OUTCOME MEASURES: Clearance (renal and nonrenal), half-life, and volume of distribution of nicotine and cotinine and the calculated daily intake of nicotine. RESULTS: The total and nonrenal clearances of nicotine were not significantly different, respectively, in blacks (17.7 and 17.2 mL x min(-1) x kg(-1)) compared with whites (19.6 and 18.9 mL x min(-1) x kg(-1)) (P=.11 and .20). However, the total and nonrenal clearances of cotinine were significantly lower, respectively, in blacks (0.56 and 0.47 mL x min(-1) x kg(-1)) than in whites (0.68 vs 0.61 mL x min(-1) x kg(-1); P=.009 for each comparison). The nicotine intake per cigarette was 30% greater in blacks compared with whites (1.41 vs 1.09 mg per cigarette, respectively; P=.02). Volume of distribution did not differ for the 2 groups, but cotinine half-life was higher in blacks than in whites (1064 vs 950 minutes, respectively; P = .07). CONCLUSIONS: Higher levels of cotinine per cigarette smoked by blacks compared with whites can be explained by both slower clearance of cotinine and higher intake of nicotine per cigarette in blacks. Greater nicotine and therefore greater tobacco smoke intake per cigarette could, in part, explain some of the ethnic differences in smoking-related disease risks.  相似文献   

9.
BACKGROUND: We had observed previously that the aldosterone excretion rate and plasma aldosterone concentration were lower for black children than they were for white children. We did not know whether this was secondary to a lower intake of potassium or to suppression of the renin-angiotensin system in blacks. OBJECTIVE: To test the hypothesis that the secretion of aldosterone in response to potassium would be different in blacks than in a control group of whites. DESIGN: Black and white subjects were selected on the basis of their having aldosterone excretion rates that were in the lowest quartile for the entire original cohort. Since the blacks typically had lower aldosterone excretion rates than did the whites, the black participants were represented primarily by those with average rates of aldosterone production among blacks, whereas the whites were represented by those with the lowest aldosterone production rates among whites. The protocol consisted of a placebo-controlled, randomized cross-over study design. METHODS: Twelve blacks and 12 whites, aged 14.1 +/- 1.6 (mean +/- SD) and 15.4 +/- 2.1 years, respectively, were allocated randomly to double-blind treatment either with placebo or with 40 mmol/day potassium chloride for 7 days and then the alternate treatment Measurements of the plasma renin activity (PRA), plasma aldosterone concentration, and urinary aldosterone excretion were performed in an inpatient research unit at the end of the treatment. The blood pressure was monitored for 24 h. RESULTS: Treatment with potassium increased the plasma aldosterone concentration (P = 0.0006) and the urinary excretion of aldosterone (P = 0.0002) significantly both for blacks and for whites. There was no significant racial difference in the response to potassium. The PRA was overall 1.605-fold lower in the blacks than it was in the whites (P = 0.0124). The lowest PRA levels, such as those in the blacks when they were supine, tended to be increased with the potassium treatment. The blood pressure did not change significantly with the potassium supplement for either racial group. CONCLUSIONS: After we had supplemented the intake of potassium, aldosterone production increased in the blacks and in the control group of whites to the same extent The potassium treatment appeared to increase lower PRA levels. A lower intake of potassium could at least partially account for the suppression of the renin-aldosterone system in blacks.  相似文献   

10.
The lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is activated to reactive metabolites that methylate or pyridyloxobutylate DNA. Previous studies demonstrated that pyridyloxobutylated DNA interferes with the repair of O6-methylguanine (O6-mG) by O6-alkylguanine-DNA alkyltransferase (AGT). The AGT reactivity of pyridyloxobutylated DNA was attributed to (pyridyloxobutyl)guanine adducts. One potential AGT substrate adduct, 2'-deoxy-O6-[4-oxo-4-(3-pyridyl)butyl]guanosine (O6-pobdG), was prepared. This adduct was stable at pH 7.0 for greater than 13 days and to neutral thermal hydrolysis conditions (pH 7.0, 100 degrees C, 30 min). Under mild acid hydrolysis conditions (0.1 N HCl, 80 degrees C), O6-pobdG was depurinated to yield O6-[4-oxo-4-(3-pyridyl)butyl]guanine (O6-pobG). O6-pobdG was hydrolyzed to 4-hydroxy-1-(3-pyridyl)-1-butanone and guanine under strong acid hydrolysis conditions (0.8 N HCl, 80 degrees C). O6-pobG was detected in 0.1 N HCl hydrolysates of DNA alkylated with the model pyridyloxobutylating agent 4-(acetoxymethylnitrosamino)-1-(3-[5-3H]pyridyl)-1-butanone ([5-3H]NNKOAc). When [5-3H]NNKOAc-treated DNA was incubated with either rat liver or recombinant human AGT, O6-pobG was removed, presumably a result of transfer of the pyridyloxobutyl group from the O6-position of guanine to AGT's active site.  相似文献   

11.
Arylalkynes such as 4-phenyl-1-butyne (PBY), 5-phenyl-1-pentyne (PPY) and 2-ethynylnaphthalene (2-EN) are suicide inhibitors of cytochrome P450 enzymes. Arylalkyl isothiocyanates such as 6-phenylhexyl isothiocyanate (PHITC) are structurally related to arylalkynes and are known to inhibit the cytochrome P450 mediated metabolic activation and tumorigenicity of a tobacco-specific lung carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). In this study, we compared the ability of PBY, PPY, 2-EN and PHITC to inhibit A/J mouse lung tumorigenesis by NNK. Groups of 20 female mice were gavaged with 5 mumol of arylalkyne or PHITC in corn oil. Two hours later they were given a single i.p. injection of 10 mumol NNK. The mice were killed 16 weeks later. PPY and PHITC were both potent inhibitors of tumorigenesis by NNK, reducing lung tumor multiplicity from 8.35 tumors per mouse to 0.40 and 0.35 respectively. PBY and 2-EN also significantly inhibited tumor multiplicity. The results of this study demonstrate that arylalkynes and PHITC are potent inhibitors of NNK induced lung tumorigenesis in A/J mice, consistent with the hypothesis that inhibition of specific cytochrome P450 enzymes is involved in inhibition of tumorigenesis.  相似文献   

12.
Previous studies in our laboratory showed that decaffeinated green tea and black tea extracts inhibited 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced tumorigenicity in A/J female mice. In order to understand the mechanism of the inhibitory action, we examined the effects of decaffeinated green tea, black tea, and tea components on the metabolic activation of NNK in vitro and in vivo in this animal model. When added to incubation mixtures containing mouse lung microsomes, decaffeinated green tea and black tea extracts and their fractions, at concentrations up to 0.4 mg/ml, inhibited NNK oxidation and NNK-induced DNA methylation. Among the tea components examined, (-)-epigallocatechin-3-gallate was the most potent inhibitor with 50% inhibitory concentrations of about 0.12 mM for both NNK oxidation and DNA methylation. At these concentrations, (-)-epigallocatechin-3-gallate inhibited the catalytic activities of several P450 enzymes and was more potent against P450 1A and 2B1 than 2E1. When decaffeinated green or black tea extracts were given to female A/J mice as the sole source of drinking fluid before an i.p. injection of NNK (100 mg/kg body weight), a statistically significant inhibition of lung DNA methylation, however, was not observed, although a significant reduction in lung tumor multiplicity was observed. The results suggest that, although inhibition of the metabolic activation of NNK and the subsequent DNA alkylation by tea extracts can be demonstrated in vitro, this mechanism may not be important for the inhibitory action of tea against lung tumorigenesis.  相似文献   

13.
An abnormal hemodynamic response to stressful stimuli has been proposed as a mechanism involved in the higher prevalence of hypertension in blacks. Given the important role of nitric oxide (NO) in the regulation of cardiovascular homeostasis, we investigated the possibility of racial differences in vascular NO activity during mental stress. To test this hypothesis, we compared the forearm blood flow (FBF) response to mental stress in 14 white and 12 black healthy subjects during intra-arterial infusion of either saline or NO synthesis inhibitor N(G)-monomethyl-L-arginine (L-NMMA; 4 micromol/min). We also examined vascular responses of the two groups to intra-arterial infusion of sodium nitroprusside (0.8 to 3.2 microg/min), an exogenous NO donor. During saline infusion, the increase in FBF from baseline induced by mental stress was significantly higher in whites than in blacks (109+/-20% versus 58+/-8%; P=0.03). L-NMMA significantly reduced stress-induced increase in FBF in whites (from 109+/-20% to 54+/-11%; P=0.004) but not in blacks (from 58+/-8% to 42+/-10%; P=0.24); thus, the vasodilator effect of stress testing during L-NMMA was similar in whites and blacks (54+/-11% versus 42+/-10%; P=0.44). The vasodilator response to sodium nitroprusside was also lower in blacks than in whites (maximum flow, 6.9+/-2 versus 11.6+/-3.5 mL x min(-1) x dL(-1); P=0.001) and was not significantly modified by L-NMMA in either group. Our findings indicate that blacks have a reduced NO-dependent vasodilator activity during mental stress. This difference seems related to reduced sensitivity of smooth muscle to the vasodilator effect of NO and may play some role in the increased prevalence of hypertension and its complications in blacks.  相似文献   

14.
Investigated interracial difficulties of blacks and whites working together, when blacks are in a supervisory position over whites. 45 groups of male undergraduates were supervised by blacks, and 45 were supervised by whites. In each group, 2 subordinates played a business game with either a black or a white supervisor and were observed by 2 white Os. Results indicate that (a) the performance ratings of black supervisors were significantly poorer than those of white supervisors; (b) subordinates supervised by blacks behaved differently than subordinates supervised by whites, and some of these behaviors appeared to hinder the effectiveness of the black supervisor; and (c) subordinates with negative racial bias gave poorer ratings to black supervisors than subordinates with liberal racial attitudes. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

15.
Epidemiologic studies have suggested that aromatic amines (and nitroaromatic hydrocarbons) may be carcinogenic for human pancreas. Pancreatic tissues from 29 organ donors (13 smokers, 16 non-smokers) were examined for their ability to metabolize aromatic amines and other carcinogens. Microsomes showed no activity for cytochrome P450 (P450) 1A2-dependent N-oxidation of 4-aminobiphenyl (ABP) or for the following activities (and associated P450s): aminopyrine N-demethylation and ethylmorphine N-demethylation (P450 3A4); ethoxyresorufin O-deethylation (P450 1A1) and pentoxyresorufin O-dealkylation (P450 2B6); p-nitrophenol hydroxylation and N-nitrosodimethyl-amine N-demethylation (P450 2E1); lauric acid omega-hydroxylation (P450 4A1); and 4-(methylnitrosamino)-1-(3-pyridyl-1-butanol) (NNAL) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) alpha-oxidation (P450 1A2, 2A6, 2D6). Antibodies were used to examine microsomal levels of P450 1A2, 2A6, 2C8/9/18/19, 2E1, 2D6, and 3A3/4/5/7 and epoxide hydrolase. Immunoblots detected only epoxide hydrolase at low levels; P450 levels were <1% of liver. Microsomal benzidine/prostaglandin hydroperoxidation activity was low. In pancreatic cytosols and microsomes, 4-nitrobiphenyl reductase activities were present at levels comparable to human liver. The O-acetyltransferase activity (AcCoA-dependent DNA-binding of [3H]N-hydroxy-ABP) of pancreatic cytosols was high, about twothirds the levels measured in human colon. Cytosols showed high activity for N-acetylation of p-aminobenzoic acid, but not of sulfamethazine, indicating that acetyltransferase-1 (NAT1) is predominantly expressed in this tissue. Cytosolic sulfotransferase was detected at low levels. Using 32P-post-labeling enhanced by butanol extraction, putative arylamine-DNA adducts were detected in most samples. Moreover, in eight of 29 DNA samples, a major adduct was observed that was chromatographically identical to the predominant ABP-DNA adduct, N-(deoxyguanosin-8-yl)-ABP. These results are consistent with a hypothesis that aromatic amines and nitroaromatic hydrocarbons may be involved in the etiology of human pancreatic cancer.  相似文献   

16.
We reported earlier that continuous feeding of 1,4-phenylenebis(methylene)selenocyanate (p-XSC) inhibited lung tumor induction by the tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in the A/J mouse (El-Bayoumy et al., Carcinogenesis, 14, 1111-1113, 1993). The present investigation was designed to determine whether p-XSC inhibits pulmonary neoplasia induced by NNK in female A/J mice during the initiation phase of carcinogenesis or during the post-initiation phase. The naturally occurring selenomethionine was also included in this study. Doses higher than 4 p.p.m. of selenomethionine can induce toxic effects, therefore, dietary supplementation of this compound was selected at a dose level of 3.75 p.p.m. However, we were able to give p-XSC at selenium levels of 7.5 and 15 p.p.m., as mice can tolerate such doses in this form without any adverse effects. NNK was given by a single i.p. injection at dose of 10 micromol in 0.1 ml of saline. Selenomethionine did not show chemopreventive activity when administered in either phase of tumorigenesis. In contrast, p-XSC significantly reduced lung tumor multiplicity regardless of whether it was given during the initiation phase of tumorigenesis (P = 0.0009 at both levels of selenium) or post-initiation (P = 0.0009 at 15 p.p.m. and P = 0.036 for 7.5 p.p.m.). This is the first report describing that the synthetic organoselenium compound, p-XSC, can effectively block and suppress chemically (NNK)-induced lung tumor development in mice.  相似文献   

17.
Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most widely prescribed drugs. In this study, we demonstrated the efficacy of aspirin to inhibit lung tumorigenesis in A/J mice. Lung tumors (9.9 tumors/mouse) were induced by the tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), administered in drinking water between week 0 and week +7. Groups of mice were fed sulindac (123 mg/kg diet), acetylsalicylic acid (ASA; 294 mg/kg), non-buffered Aspirin (294 mg/kg) or buffered Aspirin (294 mg/kg) in AIN-76A diet from week -2 to the end of the bioassay (week +23). These doses are comparable to the maximal doses recommended for humans. ASA and non-buffered Aspirin were the most effective inhibitors and reduced lung multiplicities by 60 and 62%, respectively. Sulindac inhibited lung tumor multiplicity by 52%. Inhibition by buffered Aspirin was not statistically significant. We evaluated the efficacies of NSAIDs to inhibit NNK activation by h1A2 v2 cells expressing human P-450 1A2. Salicylates, at doses of 500 microM and 1 mM, had no effect on NNK activation. Sulindac and its sulfide and sulfone metabolites (1 mM) inhibited NNK metabolism by 90, 92 and 65%, respectively. We observed a 76% inhibition with SKF 525A, a P-450 inhibitor. Taken together, these results indicate that salicylates and sulindac could be equally effective as chemopreventive agents, but they could differ in their mode of action.  相似文献   

18.
Ellagic acid (EA) is generated by hydrolysis of ellagitannins present in fruit berries and edible nuts and grapes. Large doses of EA prevent lung tumorigenesis induced by the tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in A/J mice. In this study, we document the efficacies of the EA structural analogue (3,4,7,8-tetrahydroxy-6H-benzo[b,d]pyran-6-one) (analogue 1) to inhibit specific P450 activities, pulmonary metabolism of NNK in A/J mice, and NNK-induced mutations in Salmonella typhimurium. Mouse lung microsomes metabolized benzyloxyresorufin, a marker of cytochrome P450 2B1 activity, more extensively than methoxyresorufin or ethoxyresorufin. The EA analogue was more effective than EA in inhibiting dealkylation of the three alkoxyresorufins, suggesting that it is a nonspecific inhibitor of P450s. Mouse lung microsomes hydroxylate testosterone in the 7alpha and 6beta positions, suggesting contributions of P450 2A1 and P450 3A2 isozymes, respectively. Inhibition of both pathways was more effective with the EA analogue than with EA. Mouse lung explants metabolized NNK by alpha-carbon hydroxylation (activation) and pyridine N-oxidation (deactivation). Both pathways were inhibited when 100 microM EA was added to the culture medium. The EA analogue was a better inhibitor of the activation of NNK to electrophilic species than EA. Mouse lung microsomes activate NNK to intermediates mutagenic to S. typhimurium. Inhibition of NNK mutagenicity by EA or the EA analogue was 20 or 65%, respectively. The distribution of the EA analogue in lung and liver was determined following gavage with 1.7 mmol of the EA analogue. In the lung, a maximal level of EA analogue corresponding to 105 nmol was observed 30 min after administration of the analogue. The level in liver tissues was 4-fold lower than in the lung. Results of this study demonstrate that the EA analogue is more effective than EA in inhibiting the pulmonary activation of NNK and suggest that the EA analogue could be effective in preventing lung tumorigenesis.  相似文献   

19.
Both green and black tea have been shown to inhibit lung tumorigenesis in laboratory animal experiments. Green tea inhibited N-nitrosodiethylamine-induced lung tumor incidence and multiplicity in female A/J mice when tea was given either during the carcinogen treatment period or during the post-carcinogen treatment period. In a separate tumorigenesis model, both decaffeinated black tea and decaffeinated green tea inhibited 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumor formation. Studies in which tea was administered during different time periods in relation to the NNK suggest that tea can inhibit lung tumorigenesis at both the initiation and promotion stages. The antiproliferative effects of tea may be responsible for these anti-carcinogenic actions. Black tea polyphenol preparations decreased NNK-induced hyperproliferation. Black tea also inhibited the progression of pulmonary adenomas to adenocarcinomas and the formation of spontaneous lung tumors in A/J mice. Growth inhibition by various tea polyphenols has been demonstrated in human lung H661 and H1299 cells. Although inhibition of cell growth and signal transduction pathways by tea components have been demonstrated, the concentrations required to produce the effect are higher than achievable in tissues in vivo. More research is necessary to translate these laboratory results to applications in human chemoprevention.  相似文献   

20.
Using mortality and incidence data from Alameda County, California, this study attempted to determine whether the higher occurrence rate of prostatic cancer among black men as compared with whites in the United States might be explained by racial differences in factors associated with socioeconomic status. Each death or case of prostatic cancer was assigned to a social class based on census tract of residence, and rates by race and socioeconomic status were computed. Comparison of age-specific mortality and incidence rates by socioeconomic status reveals no gradient in either whites or blacks. The higher risk for blacks holds up at almost every age and socioeconomic level. However, the racial differences are less pronounced for incidence than for mortality. Racial differences in the occurrrence of deaths appearing in Part II of the death certificate are also examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号