首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Impinging jets are commonly used in industrial dryers and electronics chip cooling. Since in industrial practice it is necessary to use multiple jets, the interaction between jets can have important effect on their heat transfer performance. Hence, the study of cross-flow caused by the spent flow of upstream jets is obviously significant. In this study, a computational fluid dynamics simulation was carried out of the flow and heat transfer characteristics for a single semi-confined turbulent slot jet of air impinging normally or obliquely into an imposed air cross-flow of the same or different temperature. The standard k-ε and the Reynolds stress models were used. Effects of the various flow parameter (e.g., jet-to-cross-flow mass ratio) and geometric parameters (e.g., nozzle-to-target spacing and jet angle) were evaluated at a fixed Reynolds number (11,000 and 12,000) for equal and unequal temperatures of the jet and cross-flow. Results indicate the significant degradation of the impingement heat transfer rates due to cross-flow and a relatively minor influence of the temperature difference between the jet and cross-flow over the ranges of parameters studied. Both the turbulence models produced comparable Nusselt number distributions along the impingement surface.  相似文献   

2.
《Drying Technology》2013,31(10):1923-1939
Abstract

Impinging jets are commonly used in industrial dryers and electronics chip cooling. Since in industrial practice it is necessary to use multiple jets, the interaction between jets can have important effect on their heat transfer performance. Hence, the study of cross-flow caused by the spent flow of upstream jets is obviously significant. In this study, a computational fluid dynamics simulation was carried out of the flow and heat transfer characteristics for a single semi-confined turbulent slot jet of air impinging normally or obliquely into an imposed air cross-flow of the same or different temperature. The standard k?ε and the Reynolds stress models were used. Effects of the various flow parameter (e.g., jet-to-cross-flow mass ratio) and geometric parameters (e.g., nozzle-to-target spacing and jet angle) were evaluated at a fixed Reynolds number (11,000 and 12,000) for equal and unequal temperatures of the jet and cross-flow. Results indicate the significant degradation of the impingement heat transfer rates due to cross-flow and a relatively minor influence of the temperature difference between the jet and cross-flow over the ranges of parameters studied. Both the turbulence models produced comparable Nusselt number distributions along the impingement surface.  相似文献   

3.
利用实验方法探讨旋转圆柱体受狭槽式空气喷流的换热特性,圆柱体的高度与直径为定值,变动参数为(1)喷流Reynolds数(Rej)、(2)旋转Reynolds数(Rer)、(3)圆柱体直径(D)与喷嘴宽度(w)的比例(D/w)、(4)相对喷流冲击距离 (L/w,L为喷嘴距圆柱体的最近距离)等。实验结果显示平均Nusselt数(Nu)随Rej与Rer增大而提升,而D/w增加会使Nu减小,且D/w对Nu的影响将随L/w增大而衰退,且存在一临界L/w值能产生最高的Nu,且临界L/w值将随D/w增大而增大,最后,提出合理而准确的经验公式。  相似文献   

4.
Local and average heat transfer coefficients were measured for a confined turbulent slot jet impinging on a permeable surface at which there may be throughflow. Local Nusselt number was obtained using a unique porous sensor designed for measurement of local heat transfer at a permeable surface which is subjected to rapidly and widely varying heat transfer. Measurements were performed for a wide range of jet Reynolds number and throughflow rates. Convective heat transfer coefficients was found to be enhanced by throughflow, and the enhancement factor in terms of Stanton number to be independent of jet Reynolds number and of extent of heat transfer area.  相似文献   

5.
An experimental and numerical simulation study of heat transfer due to a confined impinging circular jet is presented. In this research, a stainless steel foil heated disk was used as the heat transfer surface of a simulated chip, and the thermocouples were mounted symmetrically along the diameter of the foil to measure the temperature distribution on the surface. Driven by a small pump, a circular air jet (1.5 mm and 1 mm in diameter) impinged on the heat‐transfer surface with middle and low Reynolds numbers. The parameters, such as Reynolds number and ratio of height‐to‐diameter, were changed to investigate the radial distribution of the Nusselt number and the characteristics of heat transfer in the stagnation region. Numerical computations were performed by using several different turbulence models. In wall bounded turbulent flows, near‐wall modeling is crucial. Therefore, the turbulence models enhanced wall treatment, such as the RNG κ‐? model, may be superior for modeling impingement flows. The numerical results showed reasonable agreement with the experimental data for local heat transfer coefficient distributions. The impinging jet may be an effective method to solve the cooling problem of high power density electronic packaging.  相似文献   

6.
Experimental investigation to study the heat transfer between a vertical round alumina-water nanofluid jet and a horizontal circular round surface is carried out. Different jet flow rates, jet nozzle diameters, various circular disk diameters and three nanoparticles concentrations (0, 6.6 and 10%, respectively) are used. The experimental results indicate that using nanofluid as a heat transfer carrier can enhance the heat transfer process. For the same Reynolds number, the experimental data show an increase in the Nusselt numbers as the nanoparticle concentration increases. Size of heating disk diameters shows reverse effect on heat transfer. It is also found that presenting the data in terms of Reynolds number at impingement jet diameter can take into account on both effects of jet heights and nozzle diameter. Presenting the data in terms of Peclet numbers, at fixed impingement nozzle diameter, makes the data less sensitive to the percentage change of the nanoparticle concentrations. Finally, general heat transfer correlation is obtained verses Peclet numbers using nanoparticle concentrations and the nozzle diameter ratio as parameters.  相似文献   

7.
张红军  邹正平 《化工学报》2012,63(7):2033-2044
基于两区(two-domain)模型采用基于预处理的时间推进法对铺设有多孔介质层的恒温平板在受限层流冲击射流作用下的流动与换热特性进行了研究,其中多孔区域动量方程采用Brinkman-Forchheimer拓展Darcy模型,能量方程则采用局部热平衡(LTE)模型,并对porous/fluid交界面切应力跳跃条件对多孔介质冲击射流的影响进行了分析。流体的控制方程采用基于密度的有限体积法来求解,并针对于多孔区域低速流动特点采用相对应的预处理矩阵来消除控制方程的刚性。还对Reynolds数、孔隙率、Darcy数、热导率比、多孔介质层厚度等参数的变化对流动结构及换热特性的影响进行了分析。研究结果表明,在目前的计算条件下,在其他参数一定时,Reynolds数、孔隙率对通道内流动结构的影响有限;Darcy数、多孔介质层厚度则对流动结构的影响很大;上述参数对受冲击平板的总体换热性能均有明显的影响。在受冲击平板上铺设适当厚度的高渗透率、高热导率的多孔材料能有效地增强换热性能。  相似文献   

8.
A three dimensional computational fluid dynamic investigation is carried out to predict the turbulent flow and surface heat transfer under an impinging air jet issuing normally from a single noncircular orifice in a plate held parallel to the target surface. Static pressure distributions, velocity fields and local as well as average Nusselt number on the impinged surface are presented for square, elliptic, and rectangular orifices and compared with those for a circular orifice. Effects of jet Reynolds number as well as spacing between the nozzle plate and the impinged surface are examined using a two-layer κ-η turbulence model. Results show flow structure similarities between the characteristics of rectangular and elliptic jets of equal aspect ratio. Further, it is observed that noncircular impinging jets can provide higher average heat transfer rates than corresponding circular jets for certain geometric parameters viz. nozzle-to-plate spacing and the size of the averaging area used to compute the average Nusselt number.  相似文献   

9.
不同工作因数下方波冲击射流的换热特性   总被引:2,自引:0,他引:2       下载免费PDF全文
汪健生  王振川  李美军 《化工学报》2013,64(7):2428-2435
应用数值模拟方法研究了不同工作因数下方波冲击射流的换热及流动特性,并分析了冲击靶面换热特性的变化规律。研究了冲击靶面换热特性随Reynolds数、脉冲频率、喷嘴距冲击靶面距离与喷嘴直径之比等参数的变化规律,重点分析了不同工作因数对冲击射流滞止区域换热与流动特性的影响,并将数值计算结果与连续冲击射流、脉动冲击射流实验结果进行对比验证。计算结果表明:当工作因数为0.5与0.7时,冲击靶面滞止区域Nusselt数非常接近;当工作因数为0.5时,壁面射流区域Nusselt数比工作因数为0.7时提高了10%;工作因数为0.9时,冲击靶面Nusselt数比连续冲击射流提高3%;工作因数为0.7时,相对于工作因数为0.5、0.9及连续冲击射流时,冲击靶面滞止区域存在强烈的涡结构变化。  相似文献   

10.
《Drying Technology》2013,31(9):2027-2049
Abstract

A three dimensional computational fluid dynamic investigation is carried out to predict the turbulent flow and surface heat transfer under an impinging air jet issuing normally from a single noncircular orifice in a plate held parallel to the target surface. Static pressure distributions, velocity fields and local as well as average Nusselt number on the impinged surface are presented for square, elliptic, and rectangular orifices and compared with those for a circular orifice. Effects of jet Reynolds number as well as spacing between the nozzle plate and the impinged surface are examined using a two-layer κη turbulence model. Results show flow structure similarities between the characteristics of rectangular and elliptic jets of equal aspect ratio. Further, it is observed that noncircular impinging jets can provide higher average heat transfer rates than corresponding circular jets for certain geometric parameters viz. nozzle-to-plate spacing and the size of the averaging area used to compute the average Nusselt number.  相似文献   

11.
圆形自由水射流冲击换热及喷嘴布置   总被引:2,自引:1,他引:1       下载免费PDF全文
柳翠翠  姜泽毅  张欣欣  张成  马强 《化工学报》2011,62(5):1275-1281
引言 水射流冲击冷却由于具有较高的换热能力,广泛应用于机械和化工行业,以实现工件的快速冷却和控制工件的温度变化.在大型轴类工件(工件直径D=1000~3000 mm)喷水冷却装置中,多喷嘴圆孔自由水射流以特定阵列布置冲击至工件表面,相对短暂的沸腾换热结束后,阵列自由水射流即以强制对流方式实现工件冷却.因此,自由水射流冲击换热特性及多喷嘴布置形式对喷水冷却装置的结构设计至关重要.  相似文献   

12.
This article presents results from a numerical study of pulsating jet impingement heat transfer. The motivation is to seek conditions offering a significant enhancement compared to steady flow impingement drying. The CFD software package FLUENT was used for simulating slot-type pulsating jet impingement flows with confinement. The parameter study included velocity amplitude ratio, mean jet velocity, and pulsation frequency. The distance from nozzle exit to surface was three times the hydraulic diameter of the nozzle. The Reynolds number based on the nozzle hydraulic diameter and jet temperature was 2,460 with a mean jet velocity of 30 m/s, which is the base case of the numerical experiments. Results showed that time-averaged surface heat transfer increased with increasing velocity amplitude for the same mean jet velocity. Large velocity amplitudes helped enhance heat transfer by two mechanisms: high jet velocity during the positive cycle and strong recirculating flows during the negative cycle. For the cases with different mean jet velocities but the same maximum velocity, time-averaged surface heat flux decreased with decreasing mean jet velocity. As for the effects of pulsation frequency, with high-velocity amplitude ratio, time-averaged surface heat fluxes were at the same level regardless of frequency. However, at low-velocity amplitude ratio, high frequency caused stronger recirculating flows resulting in greater heat transfer compared to the cases with a lower frequency.  相似文献   

13.
This article presents results from a numerical study of pulsating jet impingement heat transfer. The motivation is to seek conditions offering a significant enhancement compared to steady flow impingement drying. The CFD software package FLUENT was used for simulating slot-type pulsating jet impingement flows with confinement. The parameter study included velocity amplitude ratio, mean jet velocity, and pulsation frequency. The distance from nozzle exit to surface was three times the hydraulic diameter of the nozzle. The Reynolds number based on the nozzle hydraulic diameter and jet temperature was 2,460 with a mean jet velocity of 30 m/s, which is the base case of the numerical experiments. Results showed that time-averaged surface heat transfer increased with increasing velocity amplitude for the same mean jet velocity. Large velocity amplitudes helped enhance heat transfer by two mechanisms: high jet velocity during the positive cycle and strong recirculating flows during the negative cycle. For the cases with different mean jet velocities but the same maximum velocity, time-averaged surface heat flux decreased with decreasing mean jet velocity. As for the effects of pulsation frequency, with high-velocity amplitude ratio, time-averaged surface heat fluxes were at the same level regardless of frequency. However, at low-velocity amplitude ratio, high frequency caused stronger recirculating flows resulting in greater heat transfer compared to the cases with a lower frequency.  相似文献   

14.
This article presents a numerical study of transport phenomena under impinging circular jet banks over a moving surface by solving three-dimensional Navier-Stokes equation in both the laminar and the turbulent regime. A periodic element of the jet bank was used with jet pitch of 10d, span of target surface as 10d, and jet height of 2d, where d is the jet diameter. For the turbulent closure, a realizable k-ε model was used. The distributions of the Nusselt number and the skin friction coefficients were computed from the analyzed data. The surface velocity was found to influence strongly the flow structure over the impinging surface, leading to reduction in heat transfer.  相似文献   

15.
为了进一步探究具有不同截面高宽比的单一螺旋通道内流体湍流流动与换热特性以及射流对矩形截面螺旋通道的强化传热效果,采用计算流体动力学软件模拟研究了高宽比γ分别为0.625, 1.1, 1.6和2.5时,单一矩形螺旋通道及射流作用下螺旋通道内的湍流流场、二次流场及强化换热特性。结果表明,对于单一矩形螺旋通道,相同横截面积和流量时,仅当γ≥1.6的通道在高雷诺数下二次流会出现四涡结构,其余为两涡结构。对于单一螺旋通道,γ值越大流动阻力越小,同时换热性能越差。加入射流后,矩形截面四个壁面的换热能力均有提高,γ值越大射流的强化传热效果越显著,研究范围内局部壁面换热努塞尔数的平均值(Nulocal)m最高可为单一螺旋通道的2.51倍。考虑流量增加的影响,射流影响下的螺旋通道区域内综合强化传热因子PEC2在1.05~1.21之间。  相似文献   

16.
This article presents a numerical study of transport phenomena under impinging circular jet banks over a moving surface by solving three-dimensional Navier-Stokes equation in both the laminar and the turbulent regime. A periodic element of the jet bank was used with jet pitch of 10d, span of target surface as 10d, and jet height of 2d, where d is the jet diameter. For the turbulent closure, a realizable k-ε model was used. The distributions of the Nusselt number and the skin friction coefficients were computed from the analyzed data. The surface velocity was found to influence strongly the flow structure over the impinging surface, leading to reduction in heat transfer.  相似文献   

17.
孙斌  曲艺  杨迪 《化工进展》2016,35(8):2334-2341
以纳米流体为工质对冲击射流冷却系统的综合性能进行实验,主要研究了添加纳米颗粒的纳米流体与水在不同流速、不同射流高度等条件下冲击射流的传热效率,同时也对不同种类的纳米流体的换热效率进行了对比。结果表明:对于添加了纳米颗粒的冲击射流冷却系统,传热效率得到显著提高,但当质量分数达到0.5%时,传热系数变化不明显。对于不同种类的纳米流体:Cu-水、Al2O3-水和Al-水纳米流体,其中Cu-水的换热效率最高,存在一个特定的射流高度,使传热系数达到最大值。研究结果对设计制造轻型紧凑的高效换热器有实用的工程价值。  相似文献   

18.
通过粒子图像测速流场实验与传热实验相结合,研究了内插螺旋立式上行管的螺旋节距、丝径、中径比等结构参数在不同Re下对流场、阻力及传热性能的影响。结果表明,内插螺旋能够有效扰动和混合管内流体,使管内形成多个纵向旋涡的流体结构、增大管壁附近液体涡量,有利于强化传热。当Re相同时,管内平均流速v、Nu和综合换热性能PEC均随丝径增大而增大,随中径比减小而增大;随节距增大,3种参数均出现增大的趋势,节距大于20 mm后开始减小。管内流体的阻力f随丝径和节距增大而减小,随中径比增大而增大。综合比较,在较低Re时,节距p=20 mm、丝径e=1.6 mm、中径比D/d=0.75时综合传热效果最好。  相似文献   

19.
A theoretical model is proposed to evaluate the heat transfer characteristics of axisymmetric impinging fluid jets on the horizontal hot surface in the stagnation region using the energy integral method. A generalized expression involving various modeling parameters such as Nusselt number, nozzle‐to‐plate distance, Prandtl number, Reynolds number, and the modeling parameter k is obtained from the analysis. Present predictions are found to agree well with the test data involving a wide range of coolant type, Reynolds number, and nozzle‐to‐plate distance. In addition, a mechanistic correlation is suggested between the modeling parameter k and flow parameter, i.e., Reynolds number.  相似文献   

20.
扭曲三叶管传热与流阻性能的数值研究   总被引:3,自引:2,他引:1       下载免费PDF全文
王定标  王宏斌  梁珍祥 《化工学报》2012,63(7):2064-2069
扭曲管换热器是一种新型高效换热器。在扭曲管强化传热机理研究的基础上,提出了一种新的扭曲管管型--三叶管。验证了标准k-ω湍流模型在圆管及扭曲椭圆管计算中的精确度,并采用该湍流模型对扭曲三叶管Re在4000~20000范围内的传热和流阻性能进行了研究。计算结果表明,扭曲三叶管的Nusselt数比扭曲椭圆管大,虽然压差增大较多但综合传热性能比扭曲椭圆管高。这是由于扭曲三叶管特殊的三叶区结构以及过渡区曲率的变化,使得三叶管内的螺旋流动比椭圆管更为复杂,速度场与温度梯度场的协同程度更好。随着Reynolds数的增大扭曲三叶管的压差及Nusselt数都逐渐增大,但综合性能逐渐降低,在低Reynolds数下扭曲三叶管的强化传热效果较为明显。内切圆直径及过渡圆弧直径越小,扭曲三叶管的综合性能越好,其中内切圆直径的影响更为显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号