首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Polymer thin film deposition using an atmospheric pressure micro-plasma jet driven by dual-frequency excitations is described in this paper. The discharge process was operated with a mixture of argon (6 slm) and a small amount of acetone (0-2100 ppm). Plasma composition was measured by optical emission spectroscopy (OES). In addition to a large number of Ar spectra lines, we observed some spectra of C, CN, CH and C2. Through changing acetone content mixed in argon, we found that the optimum discharge condition for deposition can be characterized by the maximum concentration of carbonaceous species. The deposited film was characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy. The XPS indicated that the film was mostly composed of C with trace amount of O and N elements. The FTIR suggested different carbon-containing bonds (-CHx, C=O, C=C, C-O-C) presented in the deposited film.  相似文献   

2.
This study investigated the effect of cold helium plasma treatment on seed germina- tion, growth and yield of wheat. The effects of different power of cold plasma on the germination of treated wheat seeds were studied. We found that the treatment of 80 W could significantly improve seed germination potential (6.0%) and germination rate (6.7%) compared to the control group. Field experiments were carried out for wheat seeds treated with 80 W cold plasma. Com- pared with the control, plant height (20.3%), root length (9.0%) and fresh weight (21.8%) were improved significantly at seedling stage. At booting stage, plant height, root length, fresh weight, stem diameter, leaf area and leaf thickness of the treated plant were respectively increased by 21.8%, 11.0%, 7.0%, 9.0%, 13.0% and 25.5%. At the same time, the chlorophyll content (9.8%), nitrogen (10.0%) and moisture content (10.0%) were higher than those of the control, indicating that cold plasma treatment could promote the growth of wheat. The yield of treated wheat was 7.55 t-ha-1, 5.89% more than that of the control. Therefore, our results show that cold plasma has important application prospects for increasing wheat yield.  相似文献   

3.
Electric discharge in water can generate a large number of oxidants such as ozone, hydrogen peroxide and hydroxyl radicals. In this paper, a non-thermal plasma processing system was established by means of pulsed dielectric barrier discharge in gas-liquid phase. The electrodes of discharge reactor were staggered. The yield of H2O2 was enhanced after discharge. The effects of discharge time, discharge voltage, frequency, initial pH value, and feed gas were investigated. The concentration of hydrogen peroxide and ozone was measured after discharge. The experimental results were fully analyzed. The chemical reaction equations in water were given as much as possible. At last, the water containing Rhodamine B was tested in this system. The degradation rate came to 94.22% in 30 min.  相似文献   

4.
In this paper, we report silicon oxide coatings deposited by plasma enhanced chem- ical vapor deposition technology (PECVD) on 125 pm polyethyleneterephthalate (PET) surfaces for the purpose of the shelf lifetime extension of sealed polymer solar cells. After optimiza- tion of the processing parameters, we achieved a water vapor transmission rate (WVTR) of ca. 10-a g/m2/day with the oxygen transmission rate (OTR) less than 0.05 cc/m2/day, and succeeded in extending the shelf lifetime to about 400 h in structure of coatings related to the properties of encapsulated solar cells. And then the chemical encapsulated cell was investigated in detail  相似文献   

5.
A cylindrical hollow cathode discharge (HCD) in CH4/Ar gas mixture at pressure of 20-30 Pa was used to deposit diamond-like carbon (DLC) films on the inner surface of a stainless steel tube. The characteristics of the HCD including the voltage-current curves, the plasma im- ages and the optical emission spectrum (OES) were measured in Ar and CHn/Ar mixtures. The properties of DLC films prepared under different conditions were analyzed by means of Raman spectroscopy and scanning electron microscopy (SEM). The results show that the electron exci- tation temperature of HCD plasma is about 2400 K. DLC films can be deposited on the inner surface of tubes. The ratio of sp3/sp2 bonds decreases with the applied voltage and the deposition time. The optimizing CH4 content was found to be around CH4/Ar =1/5 for good quality of DLC films in the present system.  相似文献   

6.
In this study, Saccharomyces cerevisiae (S. cerevisiae) was exposed to dielectric barrier discharge plasma (DBD) to improve its ethanol production capacity during fermenta- tion. Response surface methodology (RSM) was used to optimize the discharge-associated pa- rameters of DBD for the purpose of maximizing the ethanol yield achieved by DBD-treated S. cerevisiae. According to single factor experiments, a mathematical model was established using Box-Behnken central composite experiment design, with plasma exposure time, power supply volt- age, and exposed-sample volume as impact factors and ethanol yield as the response. This was followed by response surface analysis. Optimal experimental parameters for plasma discharge- induced enhancement in ethanol yield were plasma exposure time of 1 rain, power voltage of 26 V, and an exposed sample volume of 9 mL. Under these conditions, the resulting yield of ethanol was 0.48 g/g, representing an increase of 33% over control.  相似文献   

7.
In this paper, we reported nano-scale SiOx coatings deposited on polyethylene terephthalate (PET) webs by microwave surface-wave assisted plasma enhanced chemical vapor deposition for the purpose of improving their barrier properties. Oxygen (O2) and hexamethyl- disiloxane (HMDSO) were employed as oxidant gas and Si monomer during SiOx deposition, re- spectively. Analysis by Fourier transform infrared spectroscope (FTIR) for chemical structure and observation by atomic force microscopy (AFM) for surface morphology of SiO~ coatings demon- strated that both chemical compounds and surface feature of coatings have a remarkable influence on the coating barrier properties. It is noted that the processing parameters play a critical role in the barrier properties of coatings. After optimization of the SiOx coatings deposition conditions, i.e. the discharge power of 1500 W, 2 : 1 of O2 : HMDSO ratio and working pressure of 20 Pa, a better barrier property was achieved in this work.  相似文献   

8.
Large size of air plasma at near atmospheric pressure has specific effects in aerospace applications. In this paper, a two dimensional multi-fluid model coupled with Monte Carlo (MC) model is established, and some experiments were carried out to investigate the characteristics of electron beam air plasma at pressure of 100-170 Torr. Based on the model, the properties of electron beam air plasma are acquired. The electron density is of the order of 1016 m-3 and the longitudinal size can exceed 1.2 m. The profiles of charged particles demonstrate that the oxygen molecule is very important for air plasma and its elementary processes play a key role in plasma equilibrium processes. The potential is almost negative and a very low potential belt is observed at the edge of plasma acting as a protection shell. A series of experiments were carried out in a low pressure vacuum facility and the beam plasma densities were diagnosed. The experimental results demonstrate that electron density increased with the electron beam energy, and the relatively low pressure was favorable for gaining high density plasma. Hence in order to achieve high density and large size plasma, it requires the researchers to choose proper discharge parameters.  相似文献   

9.
Dielectric barrier discharge (DBD) cold plasma at atmospheric pressure was used for preparation of copper nanoparticles by reduction of copper oxide (CuO). Power X-ray diffraction (XRD) was used to characterize the structure of the copper oxide samples treated by DBD plasma. Influences of H2 content and the treating time on the reduction of copper oxide by DBD plasma were investigated. The results show that the reduction ratio of copper oxide was increased initially and then decreased with increasing H2 content, and the highest reduction ratio was achieved at 20% H2 content. Moreover, the copper oxide samples were gradually reduced by DBD plasma into copper nanoparticles with the increase in treating time. However, the average reduction rate was decreased as a result of the diffusion of the active hydrogen species. Optical emission spectra (OES) were observed during the reduction of the copper oxide samples by DBD plasma, and the reduction mechanism was explored accordingly. Instead of high-energy electrons, atomic hydrogen (H) radicals, and the heating effect, excited-state hydrogen molecules are suspected to be one kind of important reducing agents. Atmospheric-pressure DBD cold plasma is proved to be an efficient method for preparing copper nanoparticles.  相似文献   

10.
Abstract The gas phase nucleation process of anatase TiO2 in atmospheric non-thermal plasma enhanced chemical vapor deposition is studied. The particles synthesized in the plasma gas phase at different power density were collected outside of the reactor. The structure of the collected particles has been investigated by field scanning electron microscope (FESEM), X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED). The analysis shows that uniform crystalline nuclei with average size of several nanometers have been formed in the scale of micro second through this reactive atmo- spheric plasma gas process. The crystallinity of the nanoparticles increases with power density. The high density of crystalline nanonuclei in the plasma gas phase and the low gas temperature are beneficial to the fast deposition of the 3D porous anatase TiO2 film.  相似文献   

11.
         下载免费PDF全文
Al-doped zinc-oxide (AZO) thin films treated by oxygen and chlorine inductively coupled plasma (ICP) were compared. Kelvin probe (KP) and X-ray photoelectron spectroscopy (XPS) were employed to characterize the effect of treatment. The results of KP measurement show that the surface work function of AZO thin films can increase up to 5.92 eV after oxygen ICP (O-ICP)’s treatment, which means that the work function was increased by at least 1.1 eV. However, after the treatment of chlorine ICP (Cl-ICP), the work function increased to 5.44 eV, and the increment was 0.6 eV. And 10 days later, the work function increment was still 0.4 eV after O-ICP’s treatment, while the work function after Cl-ICP’s treatment came back to the original value only after 48 hours. The XPS results suggested that the O-ICP treatment was more effective than Cl-ICP for enhancing the work function of AZO films, which is well consistent with KP results.  相似文献   

12.
CrN films have been synthesized on Si(100) wafer by inductively coupled plasma (ICP)-enhanced radio frequency (RF) magnetron sputtering. The effects of ICP power on microstructure, crystal orientation, nanohardness and stress of the CrN films have been investigated. With the increase of ICP power, the current density at substrate increases and the films exhibit denser structure, while the DC self-bias of target and the deposition rate of films decrease. The films change from crystal structure to amorphous structure with the increase of ICP power. The measured nanohardness and the compressive stress of films reach the topmost at ICP power of 150 W and 200 W, respectively. The mechanical properties of films show strong dependence on the crystalline structure and the density influenced by the ICP power.  相似文献   

13.
ZrN fihns were deposited on Si(111) and M2 steel by inductively coupled plasma (ICP)-enhanced RF magnetron sputtering. The effect of ICP power on the microstructure, mechanical properties and corrosion resistance of ZrN films was investigated. When the ICP power is below 300 W, the ZrN films show a columnar structure. With the increase of ICP power, the texture coefficient (To) of the (111) plane, the nanohardness and elastic modulus of the films increase and reach the maximum at a power of 300 W. As the ICP Power exceeds 300 W, the films exhibit a ZrN and ZrNx mixed crystal structure without columnar grain while the nanohardness and elastic modulus of the films decrease. All the ZrN coated samples show a higher corrosion resistance than that of the bare M2 steel substrate in 3.5% NaCl electrolyte. The nanohardness and elastic modulus mostly depend on the crystalline structure and Tc of ZrN(111).  相似文献   

14.
The plasma density and electron temperature of a multi-source plasma system composed of several collisional inductively coupled plasma (ICP) cells were measured by a doubleprobe. The discharges of the ICP cells were shown to be independent of each other. Furthermore, the total plasma density at simultaneous multi-cell discharge was observed to be approximately equal to the summation of the plasma density when the cells discharge separately. Based on the linear summation phenomenon, it was shown that a larger area plasma with a uniform density and temperature profile could be constructed with multi-collisional ICP cells.  相似文献   

15.
An investigation was made into polystyrene (PS) grafted onto nanometre silicon carbide (SIC) particles. In our experiment, the grafting polymerization reaction was induced by a radio frequency (RF) inductively coupled plasma (ICP) treatment of the nanometre powder. FTIR (Fourier transform infrared spectrum) and XPS (X-ray photoelectron spectroscopy) results reveal that PS is grafted onto the surface of silicon carbide powder. An analysis is presented on the effectiveness of this approach as a function of plasma operating variables including the plasma treating power, treating time, and grafting reaction temperature and time.  相似文献   

16.
Numerical simulations of 10 kW and 110 kW inductively coupled plasma (ICP) wind tunnels were carried out to study physical properties of the flow inside the ICP torch and vacuum chamber with air as tile working gas. Two-dimensional compressible axisymmetric Navier- Stokes (N-S) equations that took into account 11 species and 49 chemical reactions of air, were solved. A heat source model was used to describe the heating phenomenon instead of solving the electromagnetic equations. In the vacuum chamber, a four-temperature model was coupled with N-S equations. Numerical results for tile 10 kW ICP wind tunnel are presented and discussed in detail as a representative case. It was found that the plasma flow in the vacuum chamber tended to be in local thermoehemical equilibrium. To study the influence of operation conditions on the flow field, simulations were carried out for different chamber pressures and/or input powers. The computational results for the above two ICP wind tunnels were compared with corresponding experimental data. The computational and experimental results agree well, therefore the flow fields of ICP wind tunnels can be clearly understood.  相似文献   

17.
Two-dimensional (2D) numerical simulations of thermochemical nonequilibrium in?ductively coupled plasma (ICP) flows inside a 10-kW inductively coupled plasma wind tunnel (ICPWT) were carried out with nitrogen as the working gas. Compressible axisymmetric Navier-Stokes (N-S) equations coupled with magnetic vector potential equations were solved. A four-temperature model including an improved electron-vibration relaxation time was used to model the internal energy exchange between electron and heavy particles. The third-order accuracy elec?tron transport properties (3rd AETP) were applied to the simulations. A hybrid chemical kinetic model was adopted to model the chemical nonequilibrium process. The flow characteristics such as thermal nonequilibrium, inductive discharge, e?ects of Lorentz force were made clear through the present study. It was clarified that the thermal nonequilibrium model played an important role in properly predicting the temperature field. The prediction accuracy can be improved by applying the 3rd AETP to the simulation for this ICPWT.  相似文献   

18.
本工作研究铀矿地质样品中铀含量仲裁分析方法——同位素稀释电感耦合等离子体质谱法。样品经混酸密闭消解溶矿,采用浓缩铀为稀释剂,使用高分辨电感耦合等离子体质谱测定铀同位素比值,进而计算样品中的铀含量。本方法具有明晰的计量溯源特性,铀的测量范围为1~10000μg/g,对于铀含量约为4μg/g的砂岩样品,相对扩展不确定度小于4.0%(扩展因子K=2.57),可满足砂岩铀矿地质样品中铀含量仲裁分析要求。  相似文献   

19.
使用同位素稀释技术,采用配有六极杆碰撞室的多接收电感耦合等离子体质谱,对红酒标准物质中铁含量进行了测量,得到高精密度同位素丰度比测量结果。同时采用相对测量方法 ICP-MS和 ICP-OES对红酒样品中的铁含量进行了测量,并与同位素稀释质谱法进行了比较,结果符合一致。方法的不确定度分析包含了实验过程中每个步骤所产生的不确定度和使用的标准物质的不确定度,其中,流程空白对方法检测限和精密度的影响不容忽视。建立的红酒中痕量铁含量的同位素稀释质谱方法为标准物质的定值提供了技术支持。  相似文献   

20.
核电厂蒸汽发生器淤泥组成成分及其变化趋势对二回路水化学工况控制起着重要的评价和指导作用。本文开发了湿法消解 电感耦合等离子体发射光谱联用分析方法,并将其应用于核电厂蒸汽发生器淤泥元素成分的定量分析。结果显示,淤泥中的主要元素有铝、钙、铬、铁、镁、锰、镍,各元素的质量分数为0.69%~67.76%。本方法的加标回收率为84.3%~110.7%,相对标准偏差不超过0.60%(n=7),方法的检测限为0.04~3.10 μg/L。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号