共查询到18条相似文献,搜索用时 93 毫秒
1.
利用隐马尔可夫模型(HMM)的动态时间序列建模能力及神经网络的模式分类能力,构成混合语音识别模型,同时考虑到语音信号的非平稳性,采用小波分析方法提取语音特征向量。通过时间规整方法,将所有具有可变长度的语音特征向量转换为相同维数的特征向量,从而简化了神经网络的结构。仿真结果表明,采用混合语音识别模型以及时间规整方法,不仅可提高识别率,同时大大缩减了训练时间,获得了很好的识别效果。 相似文献
2.
线性预测HMM(Linear Prediction HMM,LPHMM)并没有象传统HMM那样引入状态输出独立同分布假设,但实用中识别性能并不佳.通过分析两种HMM的各自优劣,本文提出了一种新的语音识别的混合模型,将语音静态特性(基于传统HMM)和动态特性(基于LPHMM)分别描述又有机结合在一起,更为精确地刻划了真实的语音现象,同时又继承使系统的实现改动很小和较小的计算量.汉语大词汇量非特定人连续语音识别的实验表明,混合模型的识别性能显著好于LPHMM和传统HMM.理论上,本文还给出了LPHMM的一组闭式参数重估公式. 相似文献
3.
4.
5.
6.
一种基于距离相似性度量和HMMs的字符识别方法 总被引:1,自引:0,他引:1
为了能够综合利用隐马尔可夫模型(HMMs)分类器在分类过程中能够得到的多种信息,提出一种基于距离相似性度量对HMMs后验概率进行调整的方法,将样本相似性与HMMs后验概率有机地结合起来进行识别.在分类过程中,采用距离相似性度量来描述待识别样本与模式类标准样本间的相似性,然后采用归一化距离相似性度量对后验概率进行适当调整,最后用调整后的概率进行分类.实验结果表明:与标准的HMMs识别方法相比,改进后的方法能够在计算量增加很小的情况下,较好地改善系统的识别精度;系统性能的改善效率在1.1~6.5间. 相似文献
7.
为了解决联机手写藏文识别中藏文的曲线型笔划比较多,连笔情况很普遍以及相似字丁多等问题,提出了一种新的联机手写藏文识别方法:基于HMM分类器的联机手写藏文识别的方法.设计了三种不同的HMM分类器进行藏文字丁识别,实验结果表明,基于HMM分类器的联机手写藏文识别具有较高地识别率,前十位识别率可达93.9012%. 相似文献
8.
9.
一种基于SDTS的HMM训练算法 总被引:7,自引:0,他引:7
用传统的BW算法训练语音识别系统的HMM需要大量的语音数据。本文在假设声学模型系统的子空间捆绑结构(SDTS)为己知的前提下,提出了一种新的训练算法,可以有效地减少系统对训练数据的需求。理论分析和仿真表明,与传统的BW算法比较,新的训练算法(IBW)可压缩模型参数15倍,从而可大量地减少训练数据。尽管新算法要用到系统的先验知识,但它还是显示了许多优越性。 相似文献
10.
11.
DWT based HMM for face recognition 总被引:1,自引:0,他引:1
Shen Linlin Ji Zhen Bai Li Xu Chen 《电子科学学刊(英文版)》2007,24(6):835-837
A novel Discrete Wavelet Transform (DWT) based Hidden Markov Module (HMM) for face recognition is presented in this letter. To improve the accuracy of HMM based face recognition algorithm, DWT is used to replace Discrete Cosine Transform (DCT) for observation sequence ex- traction. Extensive experiments are conducted on two public databases and the results show that the proposed method can improve the accuracy significantly, especially when the face database is large and only few training images are available. 相似文献
12.
An HMM based analysis framework for semantic video events 总被引:1,自引:0,他引:1
You Junyong Liu Guizhong Zhang Yaxin 《电子科学学刊(英文版)》2007,24(2):271-275
Semantic video analysis plays an important role in the field of machine intelligence and pattern recognition. In this paper, based on the Hidden Markov Model (HMM), a semantic recognition framework on compressed videos is proposed to analyze the video events according to six low-level features. After the detailed analysis of video events, the pattern of global motion and five features in foreground-the principal parts of videos, are employed as the observations of the Hidden Markov Model to classify events in videos. The applications of the proposed framework in some video event detections demonstrate the promising success of the proposed framework on semantic video analysis. 相似文献
13.
QIN Wei WEI Gang 《中国电子科技》2006,4(1):43-46
As a kind of statistical method, the technique of Hidden Markov Model (HMM) is widely used for speech recognition. In order to train the HMM to be more effective with much less amount of data, the Subspace Distribution Clustering Hidden Markov Model (SDCHMM), derived from the Continuous Density Hidden Markov Model (CDHMM), is introduced. With parameter tying, a new method to train SDCHMMs is described. Compared with the conventional training method, an SDCHMM recognizer trained by means of the new method achieves higher accuracy and speed. Experiment results show that the SDCHMM recognizer outperforms the CDHMM recognizer on speech recognition of Chinese digits. 相似文献
14.
隐马尔可夫模型(HMM)参数迭代算法的改进 总被引:2,自引:1,他引:2
本文提出了一种改进的隐马尔可夫模型(HMM)参数迭代算法,该算法克服了传统算法的缺点,提高了HMM参数系统的分辨率,把它用于语音识别,可以有效地提高语音识别率。 相似文献
15.
16.
HMM在语音识别系统中的应用 总被引:1,自引:0,他引:1
介绍语音识别技术的应用状况与发展,对基于动态时间伸缩技术、隐含马尔科夫模型及人工神经网络的3种不同的语音识别系统进行了比较,重点介绍了隐含马尔科夫模型(HMM)在语音识别系统中的应用。其中基于HMM的语音识别系统是在UniSpeech芯片上实现基于DHMM的识别系统,然后又在同一平台上实现了基于CHMM的识别系统。 相似文献
17.
一种适于非特定人语音识别的并行隐马尔可夫模型 总被引:2,自引:0,他引:2
为了适合非特定人语音识别,提出了一种由多条并行马尔可夫链组成的并行HMM(Parallel Hidden Markov Model,PHMM),从而融合了基于分类的语音识别中为各个类别建立的模板,提高了识别性能,各条链之间允许有交叉,使得融合的多模板之间存在状态共享,同时PHMM可以在训练过程中自动完成聚类,且测试语音的输出结果来自所有类别,无需聚类分析和类别判断,这些都减少了存储量和计算量,汉语非特定人孤立数字的识别实验表明,PHMM较之传统CHMM使识别性能及噪声鲁棒性都得到了改善。 相似文献
18.
针对传统隐马尔可夫模型(HMM)方法提取时变线谱与多线谱的能力较弱以及动态规划过程计算量过大的问题,该文提出一种基于动态参数的1维隐马尔可夫模型(1D-HMM)的方法用于水声信号低频分析与记录(LOFAR)图中的线谱轨迹提取。该方法将时变频率状态建模为1阶马尔可夫过程,利用Viterbi算法循环提取多条线谱轨迹。在动态规划的迭代过程中,通过实时计算序列的1阶导数动态调整HMM中的状态转移概率矩阵,提升了对线谱轨迹的提取能力和多线谱的分辨能力;设计了一种基于动态滑动窗口的功率谱累积方法估计线谱的生灭,剔除虚假的线谱轨迹并判断线谱轨迹提取的结束。同时,该方法在实现过程中设计了对LOFAR图数据的块处理策略,大大减少了计算量。仿真和实际数据的处理结果表明,该方法在低信噪比条件下能够有效地检测和跟踪复杂时变频谱的频率状态,并有较好运行效率,为声呐设备的弱信号检测提供了良好的技术支持。 相似文献