共查询到18条相似文献,搜索用时 46 毫秒
1.
2.
海量点云数据给存储、传输、处理等带来极大困难。针对现有算法在特征保留与精简后重建模型表面积、体积、重建误差不能兼顾的问题,提出一种基于邻域点位置特征的点云精简算法。该算法根据权值计算投影面、搜寻矩阵大小以及精简比例对目标点云进行精简。将目标点云网格化处理;寻找投影面垂直方向(正、负两个方向),以目标点为中心,获取搜寻矩阵范围内的点;根据搜寻矩阵内点与目标点的位置关系确定其权值;根据所设的精简比例对原始点云进行精简。将所提算法与曲率采样法、均匀网格法和随机采样法进行比较,并从特征保留、表面积和体积变化率这3个方面进行评价。实验结果表明:所提算法的精简结果对特征区域效果优于均匀网格法和随机采样法,与曲率采样法一致;精简结果误差、重建模型的表面积差和体积差总体优于曲率采样法,与随机采样法基本一致,略差于均匀网格法。因此,所提算法既能较好地保留特征,同时又能使重建后的结果模型表面积和体积变化以及误差都较小,综合效果好。 相似文献
3.
针对目前流行的三维物体激光扫描仪获取的点云数据量大,冗余度高等问题,提出一种基于信息熵的点云精简算法。首先,定义数据点的曲率、点到邻域点重心的距离、点到邻域点的平均距离的倒数,三者乘积为权值积;然后,使用K-means聚类算法划分点云数据,根据类内估计曲率差值区分特征区域与非特征区域;最后,针对特征区域,利用提出的精简方法精简点云。实验结果表明,该方法计算相对简单,能够有效避免孔洞现象,同时,更好地保留了点云数据的原始物理特征。 相似文献
5.
6.
针对常规的点云滤波方法在去除接近模型噪声的过程中会对模型造成较大破坏的问题,提出一种结合双张量投票和多尺度法向量估计的点云滤波算法.首先采用主成分分析法在较大的尺度下估计各点的法向量,对各点进行双张量投票以提取特征点.然后对提取出的特征点在较小的尺度下估计法向量,并结合随机采样一致性方法对小范围噪声平面进行剔除.最后采... 相似文献
7.
点云数据中的冗余数据会影响到点云处理算法的速度,因此,为提升算法速率,需对点云数量进行精简。然而,点云精简过程容易剔除掉特征点,导致点云信息不完整,效果不好等问题。针对这些问题,提出一种利用3D-SIFT特征提取与八叉树体素滤波结合的点云精简方法。利用3D-SIFT算法提取出点云的强特征点和弱特征点,对弱特征点进行改进的八叉树体素滤波,并保留强特征点,通过点云合并,将滤波后的弱特征点与保留的特征点整合到一起,使得精简后的点云数据不丢失特征点信息,从而也达到了精简的效果。将本算法与均匀网格算法、非均匀网格法、随机采样算法进行对比实验。通过多个不同模型的可视化结果和信息熵评价分析,可以得出对于几种不同模型取平均本算法平均信息熵达到3.771 92,高于其他算法的信息熵,证明本算法在对数据进行精简的同时也达到了特征保留的效果。 相似文献
8.
9.
10.
点云数据量十分庞大,合理地精简点云数据是点云数据处理的重要研究内容.针对传统点云精简算法存在的细节缺失、空洞等问题,提出一种基于多参数k-means聚类的自适应点云精简算法.该方法基于KD-Tree创建点云k邻域,结合曲面拟合对点云数据进行曲率和法向特征计算,运用多参数混合特征提取方法对点云特征及边界进行检测并保留;并... 相似文献
11.
空间非合作目标的相对位姿测量问题成为空间在轨操作任务的重难点,通过对激光雷达获取的目标三维点云进行聚类,得到小规模、特征明显的聚类点云,有效提高了配准效率和精度。针对基于区域生长的聚类算法在对可视点云进行聚类时,特征相似部分无法聚类识别的问题,提出了二维图像优化三维点云聚类的方法。该方法将深度值信息和RGB颜色值建立数学映射关系,点云降维后,利用颜色梯度突变进行边界提取,将边界内的点逆向恢复到原始点云,最后将各个类的点云进行合并,得到易于识别的显著特征点云。实验结果表明,在配准角度误差为±5°的条件下,可有效地缩减点云规模并保留了显著特征,提高ICP配准算法的计算效率,为解决空间非合作目标相对位姿实时测量提供技术支持和解决思路。 相似文献
12.
3D点云目标检测是计算机3D视觉中的一个关键技术,本文针对激光雷达点云数据的稀疏性、无序性和数据量大,导致神经网络运算效率慢、检测精度低等问题,开展了基于激光雷达点云的目标检测算法研究。在激光雷达点云数据处理阶段,我们将原始点云数据体素化,解决了点云稀疏性和无序性问题,然后使用多层特征下采样层构建特征金字塔,实验验证了该方法使网络在训练阶段更快收敛,有效减少点云数据量大导致的网络运算开销,网络运算效率提升~39;同时,我们通过引入Transformer注意力模块,提高网络对点云目标关键特征的学习能力,使目标检测的准确率达到885。总体实验结果表明,本文算法在确保检测精度的前提下,提升了网络运算效率。 相似文献
13.
针对经典迭代最邻近点(iterative closest point,ICP)算法在三维激光点云配准领域内,存在收敛速度慢、配准误差大、配准效率低的问题,提出了一种基于法向量夹角特征和边界旋转角相融合的改进ICP算法。利用点云区域层划分将点云分成若干独立单元方格,搜寻方格的法向量夹角特征关键点,结合点面曲率对应关系形成初始匹配点对,随后引入距离约束函数,估算边界旋转角和相关动态迭代系数,自动优化刚性变换参数。实验结果表明,与传统ICP算法相比,改进后的算法配准误差降至0.3%以下,配准时间减少50%以上,有效提升点云配准效率。 相似文献
14.
提出一种适用于道路障碍物识别检测的聚类算法,该算法用来处理各向异性分布的激光点云数据。算法的基本思想是:针对点云空间分布的实时变化,提出在线学习合并阈值的层次聚类算法,以确定聚类数搜索范围上界和初始聚类中心的待选点集;然后提出距离乘积最大化方法,对待选点集进行初始化排序,既结合点云的空间密度分布改善了聚类结果,又克服了传统K-means算法初始聚类中心难确定的问题;最后选取Silhouette和距离评价函数为聚类有效性指标分析算法的聚类效果,确定最佳聚类数。用以上自适应、在线学习的算法对2.5D激光雷达采集的点云数据进行聚类,并与其他两种聚类算法进行实际试验比较发现,本算法可以正确分割大多数空间分布各异且相互连接的障碍物。 相似文献
15.
16.
为了解决复杂曲面熔覆过程中路径规划的难题,采用了基于点云切片法生成熔覆轨迹的算法,运用逆向技术完成零件的反求,提取模型的点云数据;并以切平面与点云带宽平面的交点确定激光束扫描轨迹,根据等弓高误差法确定加工点,对路径模拟仿真;然后以45#钢作为试验基材,在表面熔覆一层铁基粉末,进行自由曲面零件的激光熔覆路径规划研究。结果表明,使用显微硬度仪测得熔覆层硬度稳定在390HRC,为基材的1.6倍左右;熔覆层组织均匀、结构致密、无明显气孔及裂纹,与基材形成了良好的冶金结合。该方法熔覆结果良好,验证了轨迹规划的可行性。 相似文献
17.
18.
基于局部和全局采样点云数据简化算法研究 总被引:1,自引:0,他引:1
3D激光扫描方法获取的点云数据存在大量冗余数据,为便于重建模型,对点云数据简化技术的关键是在简化数据的同时,最大限度地保留点云数据的原有特征,对点云数据简化技术进行了研究,提出了一种基于局部和全局点云特征相融合的简化算法,通过基于点云的网格分割的非均匀网格法来提取局部点云特征,并且通过基于空间体素化方法对点云进行全局采样,然后将二者特征融合,获取最佳的简化特征效果。实验表明,该算法能够适应各种类型曲面数据的简化要求,其点云简化最大误差为0.02812,点云简化平均误差为0.000472,并与非均匀网格算法和空间体素法做比较,其简化效率高,简化误差小。由此可见,该方法简化点云不但具有较高的简化效率,同时又很好地保留了原始数据的细节特征。 相似文献