首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
In this article, effects of Soret and Dufour on free convection heat and mass transfer along a vertical plate embedded in a doubly stratified power‐law fluid‐ saturated non‐Darcy porous medium in the presence of a magnetic field is considered. The governing partial differential equations are transformed into ordinary differential equations using similarity transformations, with the location along the plate as a parameter and then solved numerically. A parametric study of the physical parameters involved in the problem is conducted and a representative set of numerical results is illustrated by insisting on the comparison between pseudo‐plastic, dilatant, and Newtonian fluids. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 43(7): 592–606, 2014; Published online 11 November 2013 in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21098  相似文献   

2.
The effects of viscous dissipation and solutal dispersion on free convection about an isothermal vertical cone with a fixed apex half angle, pointing downwards in a power‐law fluid‐saturated non‐Darcy porous medium are analyzed. The governing partial differential equations are transformed into partial differential equations using non‐similarity transformation. The resulting equations are solved numerically using an accurate local non‐similarity method. The accuracy of the numerical results is validated by a quantitative comparison of the heat and mass transfer rates with previously published results for a special case and the results are found to be in good agreement. The effects of viscous dissipation, solutal dispersion, and/or buoyancy ratio on the velocity, temperature, and concentration field as well as on the heat and mass transfer rates are illustrated, by insisting on the comparison between pseudo‐plastic, dilatant, and Newtonian fluids. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 43(5): 476–488, 2014; Published online 11 November 2013 in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21095  相似文献   

3.
The present article looks at the theoretical analysis of a steady stagnation‐point flow with heat transfer of a third‐order fluid towards a stretching surface. The formulation of the problem has been carried out for a third order fluid and constructed partial differential equations are rehabilitated into ordinary differential equations. The consequential ordinary differential equations are solved analytically using the homotopy analysis method (HAM). Graphical illustrations are shown for various parameters involved in the flow equations. Numerical values of skin friction coefficients and heat flux are computed and presented through tables. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.21042  相似文献   

4.
This article is concerned with the steady laminar magnetohydrodynamic boundary‐layer flow past a stretching surface with uniform free stream and internal heat generation or absorption in an electrically conducting fluid. A constant magnetic field is applied in the transverse direction. A uniform free stream of constant velocity and temperature is passed over the sheet. The effects of free convection and internal heat generation or absorption are also considered. The governing boundary layer and temperature equations for this problem are first transformed into a system of ordinary differential equations using similarity variables, and then solved by a new analytical method and numerical method, by using a fourth‐order Runge–Kutta and shooting method. Velocity and temperature profiles are shown graphically. It is shown that the differential transform method solutions are only valid for small values of independent variables but the results obtained by the DTM‐Padé are valid for the entire solution domain with high accuracy. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.21054  相似文献   

5.
The present article investigates the influence of Dufour and Soret effects on mixed convection heat and mass transfer over a vertical plate in a doubly stratified fluid‐saturated porous medium. The plate is maintained at a uniform and constant wall heat and mass fluxes. The Darcy–Forchheimer model is employed to describe the flow in porous medium. The nonlinear governing equations and their associated boundary conditions are initially transformed into dimensionless forms. The resulting system of nonlinear partial differential equations is then solved numerically by the Keller‐box method. The variation of the dimensionless velocity, temperature, concentration, heat, and mass transfer rates for different values of governing parameters involved in the problem are analyzed and presented graphically. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21114  相似文献   

6.
This study investigates the boundary‐layer flow and heat transfer characteristics in a second‐grade fluid through a porous medium. The similarity transformation for the governing equations gives a system of nonlinear ordinary differential equations which are analytically solved by the differential transform method (DTM) and the DTM‐Padé. The DTM‐Padé is a combination of the DTM and the Padé approximant. The convergence analysis elucidates that the DTM does not give accurate results for large values of independent variables. Hence the DTM is not applicable for the solution of boundary‐layer flow problems having boundary conditions at infinity. Comparison between the solutions obtained by the DTM and the DTM‐Padé with numerical solution (fourth‐order Runge–Kutta with shooting method) illustrates that the DTM‐Padé is the most effective method for solving the problems that have boundary conditions at infinity. © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.21030  相似文献   

7.
An analysis is presented to investigate the effects of a chemical reaction on an unsteady flow of a micropolar fluid over a stretching sheet embedded in a non‐Darcian porous medium. The governing partial differential equations are transformed into a system of ordinary differential equations by using similarity transformation. The resulting nonlinear coupled differential equations are solved numerically by using a fourth‐order Runge–Kutta scheme together with shooting method. The influence of pertinent parameters on velocity, angular velocity (microrotation), temperature, concentration, skin friction coefficient, Nusselt number, and Sherwood number has been studied and numerical results are presented graphically and in tabular form. Comparisons with previously published work are performed and the results are found to be in excellent agreement. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21090  相似文献   

8.
The analysis is carried out to investigate the magneto hydro dynamics (MHD) boundary layer flow, heat and mass transfer characteristics of two carbon nanotubes, namely, single‐wall carbon nanotubes (SWCNTs) and multiwall carbon nanotubes (MWCNTs), with water as the base fluid by taking thermal radiation and chemical reaction into consideration. Suitable similarity conversions are employed to reduce nonlinear partial differential equations into the system of ordinary differential equations, and these equations together with boundary conditions are solved numerically using the finite element method. Velocity, temperature, and concentration distributions as well as skin friction coefficient, Nusselt number, and Sherwood number for diverse values of influencing parameters are examined in detail, and the results are displayed graphically and in tabular form. It is found that the rate of heat transfer is remarkably higher in water‐based MWCNTs than the SWCNTs as the value of the nanoparticle volume fraction parameter rises in the boundary layer regime.  相似文献   

9.
The suction and injection effects on the free convection boundary‐layer flow over a vertical cylinder are studied. The main stream velocity and wall temperature are proportional to the axial distance along the surface of the cylinder. Both analytic and numerical solutions of the arising mathematical problem are obtained. An analytic solution is derived by a new analytical method (DTM‐Padé) and numerical solutions have been performed by using a fourth‐order Runge–Kutta and shooting methods. Velocity and temperature profiles are shown graphically. It is shown that the differential transform method (DTM) solutions are only valid for small values of the independent variable but the obtained results by DTM‐Padé are valid for the whole solution domain with high accuracy. These methods can be easily extended to other linear and nonlinear equations and so can be found widely applicable in engineering and sciences. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20366  相似文献   

10.
The behavior of a prism‐shaped solar collector with a right triangular cross sectional area is investigated numerically. The water‐CuO nanofluid is taken as the functioning liquid through the solar collector. The leading differential equations with boundary conditions are solved by the penalty finite element method using Galerkin's weighted residual scheme. The performance of parameters in terms of temperature, mass, velocity distributions, radiative, convective heat and mass transfer, mean temperature and concentration of nanofluid, mid height horizontal‐vertical velocities, and sub‐domain average velocity field are investigated systematically. These parameters include the Rayleigh number Ra and the solid volume fraction φ. The outcome explains that the performance of the solar collector can be enhanced with the largest Ra and φ. The code validation shows excellent concurrence with the hypothetical outcome obtainable in the literature. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.21039  相似文献   

11.
In the present article, we have investigated the unsteady mixed convection flow of a rotating second‐grade fluid in a rotating cone with time‐dependent angular velocities. Two cases of heat transfer are presented which are known as (i) prescribed wall temperature (PWT) and (ii) prescribed heat flux (PHF). The governing coupled nonlinear partial differential equations are simplified with the help of transformations and non‐dimensional similar and non‐similar variables, and solved analytically with the help of the homotopy analysis method (HAM). The effects of pertinent parameters on the velocity, temperature, concentration, skin friction coefficients, Nusselt number, and Sherwood number have been examined through graphs. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 43(3): 204–220, 2014; Published online 30 August 2013 in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21072  相似文献   

12.
The fully developed flow and heat transfer in a horizontal channel consisting of couple‐stress permeable fluid sandwiched between viscous fluid layers is investigated analytically. The channel walls are maintained at two different constant temperatures. The transport properties of the fluids in all regions are assumed to be constant. The governing equations are linear ordinary differential equations and hence closed form solutions are obtained. Effects of physical parameters such as viscosity ratio, thermal conductivity ratio, Eckert number, and Prandtl number on the flow are reported. An interesting and new approach is incorporated to analyze the flow for strong, weak, and comparable porosity with couple‐stress parameter. The variation of rate of heat transfer for different values of couple stress parameter and porosity is also discussed. © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21007  相似文献   

13.
Natural convection of power‐law fluids over a horizontal flat plate with constant heat flux is studied. The stretching transformations relating the similarity forms of the boundary layer velocity, pressure, and temperature profiles are applied to the governing boundary layer equations. The resultant set of coupled ordinary differential equations are solved analytically and numerically using the integral method and the finite difference method, respectively. The results are presented for the details of the velocity and temperature fields for various values of the non‐Newtonian power‐law viscosity index (n) and the generalized Prandtl number (Pr*). At a fixed value of the viscosity index, increasing the Prandtl number increases the skin friction and wall temperature. For Pr* > 1, a lower viscosity index results in larger wall skin friction, temperature scale, and thermal boundary layer thickness, and thus lower Nusselt number. The reverse trend is observed for Pr* < 1. By using an integral solution and the numerical results, a semi‐analytical correlation for the Nusselt number is obtained, valid for and .  相似文献   

14.
An analysis has been carried out to investigate the analytical solution to the flow and heat transfer characteristics of a viscous flow over a stretching sheet in the presence of second‐order slip in flow. The governing partial differential equations of flow and heat transfer are converted into non‐linear ordinary differential equations by using suitable similarity transformations. The exact solution of momentum equation is assumed in exponential form and analytical solutions of heat transfer for both PST and PHF cases are obtained by the power series method in terms of Kummer's hypergeometric function. The temperature profiles are drawn for different governing parameters. The numerical values of wall temperature gradient and wall temperature are compared with earlier numerical results which have a good agreement. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.21044  相似文献   

15.
The problem of a two‐dimensional free convective mass transfer flow of an incompressible, viscous, and electrically conducting fluid past a continuously moving semi‐infinite vertical porous plate with large suction in the presence of a magnetic field applied normal to the plate is studied. The non‐linear partial differential equations governing the flow have been transformed by a set of similarity transformations into a system of non‐linear ordinary differential equations. The resulting system of the similarity equations are solved analytically adopting the perturbation technique. The expressions for the velocity field, temperature field, concentration field, induced magnetic field, drag coefficient, and the coefficient of the rate of heat and mass transfer at the plate are obtained. The results are discussed in details through graphs and tables to observe the effect of various physical parameters involved in the problem. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21097  相似文献   

16.
This study is presented for the flow of an Oldroyd‐B fluid subject to convective boundary conditions. The two‐dimensional equations are simplified by using boundary layer approximations. The analytic solutions in the whole spatial domain (0 ≤ η < ∞) are derived by a homotopy analysis method (HAM). Interpretation of various emerging parameters is assigned through graphs for velocity and temperature distributions and tables for surface heat transfer. The present results are compared with the previous studies in limiting cases and results are found in very good agreement. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20381  相似文献   

17.
A numerical analysis has been carried out to investigate the problem of MHD boundary‐layer flow and heat transfer of a viscous incompressible fluid over a moving vertical permeable stretching sheet with velocity and temperature slip boundary condition. A problem formulation is developed in the presence of radiation, viscous dissipation, and buoyancy force. A similarity transformation is used to reduce the governing boundary‐layer equations to coupled higher‐order nonlinear ordinary differential equations. These equations are solved numerically using the fourth‐order Runge–Kutta method along with shooting technique. The effects of the governing parameters such as Prandtl number, buoyancy parameter, slip parameter, magnetic parameter, Eckert Number, suction, and radiation parameter on the velocity and temperature profiles are discussed and shown by plotting graphs. It is found that the temperature is a decreasing function of the slip parameter ST. The results also indicate that the cooling rate of the sheet can be improved by increasing the buoyancy parameter. In addition the numerical results for the local skin friction coefficient and local Nusselt number are computed and presented in tabular form. The numerical results are compared and found to be in good agreement with previously published results on special cases of the problem. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 43(5): 412–426, 2014; Published online 3 October 2013 in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21086  相似文献   

18.
K. Das 《亚洲传热研究》2013,42(3):230-242
This work is focused on numerical simulations of mixed convection stagnation point flow and heat transfer of Cu‐water nanofluids impinging normally towards a shrinking sheet. Similarity transformation technique is adopted to obtain the self‐ similar ordinary differential equations and then solved numerically using symbolic software MATHEMATICA. The features of the flow and heat transfer characteristics for different values of the governing parameters are analyzed and discussed through graphs and tables. Both cases of assisting and opposing flows are considered. The physical aspects of the problem are highlighted and discussed. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.21037 2000 Mathematics Subject Classification : 76M20, 76W05  相似文献   

19.
A novel investigation is carried out to capture the transient effects of a dual phase‐lag (DPL) model for combined heat and mass transfer magnetohydrodynamic (MHD) flow within a porous microchannel in the presence of Dufour effects and homogenous first‐order chemical reaction. The governing equations for the fluid flow problem are solved using the Laplace transform method, which is a powerful technique for solving partial differential equations. Its inversion is done by using the INVLAP subroutine of MATLAB. The numerical values of fluid velocity, fluid temperature, and species concentration are demonstrated graphically and those of skin friction, heat transfer rate, and mass transfer rate are presented through tables. It is for the first time that the actual time gap between the DPL model, the Cattaneo‐Vernotte model, and the classical Fourier?s model has been deciphered and the results unique to the DPL model are presented. We observe a clear difference between the DPL and the other two models at a dimensionless time , which gradually diminishes as time progresses, and all models coincide together at , that is, where a steady state temperature is reached. An important contribution of this study lies in discovering the time‐bound effects of the phase‐lag parameters of the DPL model on fluid temperature, species concentration, and fluid velocity and support them by physical justification. A similar discussion is provided for all other flow parameters. The results conveyed through this study would undoubtedly help researchers to advance the design of mechanical systems in microdevices involving MHD flow in porous media.  相似文献   

20.
This investigation describes the peristaltic motion of a magnetohydrodynamic (MHD) Oldroyd‐B fluid with heat and mass transfer. An incompressible Oldroyd‐B fluid is considered in a channel with flexible walls. The relevant equations are developed by employing equations of continuity, momentum, energy, and concentration. Expressions of stream function, temperature, concentration field, and heat transfer coefficient are presented when the wave number is small. The obtained solutions are graphically discussed for the several interesting parameters entering into the problem. It is found that relaxation and retardation times have opposite effects on the size of the trapped bolus. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20380  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号