首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study we present an energy and exergy modelling of industrial final macaroni (pasta) drying process for its system analysis, performance evaluation and optimization. Using actual system data, a performance assessment of the industrial macaroni drying process through energy and exergy efficiencies and system exergy destructions is conducted. The heat losses to the surroundings and exergy destructions in the overall system are quantified and illustrated using energy and exergy flow diagrams. The total energy rate input to system is 316.25 kW. The evaporation rate is 72 kg h?1 (0.02 kg s?1) and energy consumption rate is found as 4.38 kW for 1 kg water evaporation from product. Humidity product rate is 792 kg h?1 (0.22 kg s?1) and energy consumption rate is found about 0.4 kW for 1 kg short cut pasta product. The energy efficiencies of the pasta drying process and the overall system are found to be as 7.55–77.09% and 68.63%. The exergy efficiency of pasta drying process is obtained to be as 72.98–82.15%. For the actual system that is presented the system exergy efficiency vary between 41.90 and 70.94%. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
In this study, olive leaves were dried in a pilot‐scale heat pump (HP) belt conveyor dryer as a thin layer. Drying experiments were carried out at the drying air temperature range of 45–55°C with the drying air velocity range of 0.5–1.5 m s−1. The performance of the system and the process was evaluated using exergy analysis method. The exergy loss and flow diagram (the so‐called Grassmann diagram) of the dryer system was presented to give quantitative information regarding the proportion of the exergy input that is dissipated in the various system components. Effects of the drying air temperature and the velocity on the performance of the drying process were discussed. The actual coefficient of performance values were obtained to be 2.37 for the HP unit and 2.31 for the overall system, respectively. The most important component of the system for improving the efficiency was determined to be the compressor. Exergetic efficiencies of the drying of olive leaves were in the range of 67.45–81.95%. It was obtained that they increased as the drying air temperature decreased and the drying air velocity increased. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
This paper is concerned with the exergy analysis of the single layer drying process of laurel leaves in a ground-source heat pump drying cabinet, which was designed and constructed in the Solar Energy Institute, Ege University, Izmir, Turkey. The effects of drying air temperature on exergy losses, exergy efficiencies and exergetic improvement potential of the drying process are investigated. The results have indicated that exergy efficiencies of the dryer increase with rising the drying air temperature. Moreover, the laurel leaves are sufficiently dried at the temperatures ranging from 40 to 50°C with relative humidities varying from 16 to 19% and a drying air velocity of 0.5 m s−1 during the drying period of 9 h. The exergy efficiency values are obtained to range from 81.35 to 87.48% based on the inflow, outflow and loss of exergy, and 9.11 to 15.48% based on the product/fuel basis between the same drying air temperatures with a drying air mass flow rate of 0.12 kg s−1. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
Samaneh Sami  Nasrin Etesami  Amir Rahimi   《Energy》2011,36(5):2847-2855
In the present study, using a previously developed dynamic mathematical model for performance analysis of an indirect cabinet solar dryer [1], a microscopic energy and exergy analysis for an indirect solar cabinet dryer is carried out. To this end, appropriate energy and exergy models are developed and using the predicted values for temperature and enthalpy of gas stream and the temperature, enthalpy and moisture content of the drying solid, the energy and exergy efficiencies are estimated. The validity of the model for predicting variations in gas and solid characteristics along the time and the length of the solar collector and/or dryer length was examined against some existing experimental data. The results show that in spite of high energy efficiency, the indirect solar cabinet dryer has relatively low exergy efficiency. Results show that the maximum exergy losses are in midday. Also the minimums of total exergy efficiency are 32.3% and 47.2% on the first and second days, respectively. Furthermore, the effect of some operating parameters, including length of the collector, its surface, and air flow rate was investigated on the exergy destruction and efficiency.  相似文献   

5.
This paper is concerned with the energy and exergy analyses of the thin layer drying process of mulberry via forced solar dryer. Using the first law of thermodynamics, energy analysis was carried out to estimate the ratios of energy utilization and the amounts of energy gain from the solar air collector. However, exergy analysis was accomplished to determine exergy losses during the drying process by applying the second law of thermodynamics. The drying experiments were conducted at different five drying mass flow rate varied between 0.014 kg/s and 0.036 kg/s. The effects of inlet air velocity and drying time on both energy and exergy were studied. The main values of energy utilization ratio were found to be as 55.2%, 32.19%, 29.2%, 21.5% and 20.5% for the five different drying mass flow rate ranged between 0.014 kg/s and 0.036 kg/s. The main values of exergy loss were found to be as 10.82 W, 6.41 W, 4.92 W, 4.06 W and 2.65 W with the drying mass flow rate varied between 0.014 kg/s and 0.036 kg/s. It was concluded that both energy utilization ratio and exergy loss decreased with increasing drying mass flow rate while the exergetic efficiency increased.  相似文献   

6.
Abstract

Energy and exergy analysis, in the thermodynamics, is an important tool used to predict the performance of drying system. In this work, energy and exergy analyses are made during the drying process of banana using an indirect type passive solar dryer. Solar flat plate air collector is used to heat the air. Banana gets sufficiently dried at temperatures between 28 and 82?°C. Solar radiation is measured and it is ranged from 335 to 1210?W/m2. Using the first law of thermodynamics, energy analysis was carried out to estimate the amounts of energy gained from solar air heater. Also, applying the second law of thermodynamics, exergy analysis was carried out to determine exergy losses during the drying process. The exergy losses varied from 3.36 to 25.21?kJ/kg. In particular, the exergy efficiency values vary from 7.4 to 45.32%.  相似文献   

7.
In evaluating the efficiency of heat pump (HP) systems, the most commonly used measure is the energy (or first law) efficiency, which is modified to a coefficient of performance (COP) for HP systems. However, for indicating the possibilities for thermodynamic improvement, energy analysis is inadequate and exergy analysis is needed. This study presents an exergetic assessment of a ground‐source (or geothermal) HP (GSHP) drying system. This system was designed, constructed and tested in the Solar Energy Institute of Ege University, Izmir, Turkey. The exergy destructions in each of the components of the overall system are determined for average values of experimentally measured parameters. Exergy efficiencies of the system components are determined to assess their performances and to elucidate potentials for improvement. COP values for the GSHP unit and overall GSHP drying system are found to range between 1.63–2.88 and 1.45–2.65, respectively, while corresponding exergy efficiency values on a product/fuel basis are found to be 21.1 and 15.5% at a dead state temperature of 27°C, respectively. Specific moisture extraction rate (SMER) on the system basis is obtained to be 0.122 kg kW?1 h?1. For drying systems, the so‐called specific moisture exergetic rate (SMExR), which is defined as the ratio of the moisture removed in kg to the exergy input in kW h, is also proposed by the authors. The SMExR of the whole GSHP drying system is found to be 5.11 kg kW?1 h?1. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
Carbon-free energy utilization in steel production is an effective way for China's iron and steel industry to achieve low carbon development. Thus, coal gasification-shaft furnace-electric furnace (CSE) technology, which use hydrogen-enriched gas for steel production, has recently become a sustainable topic of great concern. In the current study, the material flow analysis (MFA) and exergy assessment of the CSE process are conducted to investigate the material consumption and energy efficiency of this new steelmaking process. The exergy efficiency of the CSE process is calculated to be 50.11%, indicating a great potential for energy-saving. The results indicate that the coal gasification & gas purification that responsible for hydrogen-enriched gas production is the system with the largest exergy loss (account for 23.13% of the total exergy input), while the pelletizing system has the lowest efficiency (13.33%) due to heat loss. The key to further improve the thermal performance of this process lies in the heat recovery of the coal gasifier and pelletizing. It is also found that when the H2 content in reducing gas rise from 57.00% to 100.00%, the exergy efficiency of the shaft furnace is only increased by 1.58%, while the demand volume of reducing gas significantly increases from 1326.30 Nm3/t to 2201.50 Nm3/t. The environmental benefits of hydrogen reduction based steelmaking must be considered together with energy utilization and production cost. The present work should do helpful effort for the application and further improvement of the CSE process in China.  相似文献   

9.
This paper considers the combination of hydrothermal degradation(HTD)and superheated steam(SHS)drying indisposal and processing of degradable organic wastes in municipal solid wastes(MSW).In SHS drying, a fractionof dryer thermal energy input can be recovered and used to satisfy the heat requirement in maintaining the HTDoperating temperature.Both energy and exergy analysis are applied to the combined process.The analysis coversranges of dryer inlet temperatures of 202.38-234.19℃ and feed water content of 32.5-65%.Thermal energyanalysis shows that the combination of HTD and SHS drying can achieve thermal energy self-sufficiency(TES)by manipulating process variables.The exergy analysis indicates the location,type,and magnitude of the exergylosses during the whole process by applying the second law of thermodynamics.  相似文献   

10.
In this study, the iron-based chemical looping process driven by various biomasses for hydrogen production purposes is studied and evaluated thermodynamically through energy and exergy approaches. The overall system consists of some key units (combustor, reducers and oxidizer) a torrefier, a drying chamber, an air separation unit, a heat exchanger, and auxiliary units as well. The biomasses considered are first dried and torrified in the drying chamber and sent to reactors to produce hydrogen. The exergy and energy efficiencies of the iron based chemical looping facility are investigated comparatively for performance evaluation. The maximum exergy destruction and entropy production rates are calculated for the torrefaction process as 123.15 MW and 4926 kW/K respectively. Under the steady–state conditions, a total of 8 kg/s hydrogen is produced via chemical looping process. The highest energy efficiency is obtained in the looping of rice husk with 86% while the highest exergy efficiency is obtained in the looping using sugarcane bagasse with 91%, respectively.  相似文献   

11.
In this study, a new solar power assisted multigeneration system designed and thermodynamically analyzed. In this system, it is designed to perform heating, cooling, drying, hydrogen and power generation with a single energy input. The proposed study consists of seven sub-parts which are namely parabolic dish solar collector, Rankine cycle, organic Rankine cycle, PEM-electrolyzer, double effect absorption cooling, dryer and heat pump. The effects of varying reference temperature, solar irradiation, input and output pressure of high-pressure turbine and pinch point temperature heat recovery steam generator are investigated on the energetic and exergetic performance of integration system. Thermodynamic analysis result outputs show that the energy and exergy performance of overall study are computed as 48.19% and 43.57%, respectively. Moreover, the highest rate of irreversibility has the parabolic dish collector with 24,750 kW, while the lowest rate of irreversibility is calculated as 5745 kW in dryer. In addition, the main contribution of this study is that the solar-assisted multi-generation systems have good potential in terms of energy and exergy efficiency.  相似文献   

12.
In this paper, a detailed review is presented to discuss biomass‐based hydrogen production systems and their applications. Some optimum hydrogen production and operating conditions are studied through a comprehensive sensitivity analysis on the hydrogen yield from steam biomass gasification. In addition, a hybrid system, which combines a biomass‐based hydrogen production system and a solid oxide fuel cell unit is considered for performance assessment. A comparative thermodynamic study also is undertaken to investigate various operational aspects through energy and exergy efficiencies. The results of this study show that there are various key parameters affecting the hydrogen production process and system performance. They also indicate that it is possible to increase the hydrogen yield from 70 to 107 g H2 per kg of sawdust wood. By studying the energy and exergy efficiencies, the performance assessment shows the potential to produce hydrogen from steam biomass gasification. The study further reveals a strong potential of this system as it utilizes steam biomass gasification for hydrogen production. To evaluate the system performance, the efficiencies are calculated at particular pressures, temperatures, current densities, and fuel utilization factors. It is found that there is a strong potential in the gasification temperature range 1023–1423 K to increase energy efficiency with a hydrogen yield from 45 to 55% and the exergy efficiency with hydrogen yield from 22 to 32%, respectively, whereas the exergy efficiency of electricity production decreases from 56 to 49.4%. Hydrogen production by steam sawdust gasification appears to be an ultimate option for hydrogen production based on the parametric studies and performance assessments that were carried out through energy and exergy efficiencies. Finally, the system integration is an attractive option for better performance. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
This study deals with thermoeconomic analysis of household refrigerators for providing useful insights into the relations between thermodynamics and economics. In the analysis, the EXCEM method based on the quantities exergy, cost, energy and mass is applied to a household refrigerator using the refrigerant R134a. The performance evaluation of the refrigerator is conducted in terms of exergoeconomic aspects based on the various reference state temperatures ranging from 0 to 20°C. The exergy destructions in each of the components of the overall system are determined for average values of experimentally measured parameters. Exergy efficiencies of the system components are determined to assess their performances and to elucidate potentials for improvement. Thermodynamic loss rate‐to‐capital cost ratios for each components of the refrigerator are investigated. Correlations are developed to estimate exergy efficiencies and ratios of exergy loss rate‐to‐capital cost as a function of reference (dead) state temperature. The ratios of exergy loss rates to capital cost values are obtained to vary from 2.949 × 10?4 to 3.468 × 10?4 kW USThis study deals with thermoeconomic analysis of household refrigerators for providing useful insights into the relations between thermodynamics and economics. In the analysis, the EXCEM method based on the quantities exergy, cost, energy and mass is applied to a household refrigerator using the refrigerant R134a. The performance evaluation of the refrigerator is conducted in terms of exergoeconomic aspects based on the various reference state temperatures ranging from 0 to 20°C. The exergy destructions in each of the components of the overall system are determined for average values of experimentally measured parameters. Exergy efficiencies of the system components are determined to assess their performances and to elucidate potentials for improvement. Thermodynamic loss rate‐to‐capital cost ratios for each components of the refrigerator are investigated. Correlations are developed to estimate exergy efficiencies and ratios of exergy loss rate‐to‐capital cost as a function of reference (dead) state temperature. The ratios of exergy loss rates to capital cost values are obtained to vary from 2.949 × 10?4 to 3.468 × 10?4 kW US$?1. The exergy efficiency values are also found to range from 13.69 to 28.00% and 58.15 to 68.88% on the basis of net rational efficiency and product/fuel at the reference state temperatures considered, respectively. It is expected that the results obtained will be useful to those involved in the development of analysis and design methodologies that integrate thermodynamics and economics. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
In this study, three medicinal and aromatic plants (Foeniculum vulgare, Malva sylvestris L. and Thymus vulgaris) were dried in a pilot scale gas engine driven heat pump drier, which was designed, constructed and installed in Ege University, Izmir, Turkey. Drying experiments were performed at an air temperature of 45 °C with an air velocity of 1 m/s. In this work, the performance of the drier along with its main components is evaluated using exergy analysis method. The most important component for improving the system efficiency is found to be the gas engine, followed by the exhaust air heat exchanger for the drying system. An exergy loss and flow diagram (the so-called Grassmann diagram) of the whole drying system is also presented to give quantitative information regarding the proportion of the exergy input dissipated in the various system components, while the sustainability index values for the system components are calculated to indicate how sustainability is affected by changing the exergy efficiency of a process. Gas engine, expansion valve and drying ducts account for more than 60% amount of exergy in the system. The exergetic efficiency values are in the range of 77.68–79.21% for the heat pump unit, 39.26–43.24% for the gas engine driven heat pump unit, 81.29–81.56% for the drying chamber and 48.24–51.28% for the overall drying system.  相似文献   

15.
Drying of textiles is one of the energy‐intensive unit operations and stenters are the most widely used drying machines in textile finishing mills. This study reveals energetic and exergetic analysis of a stenter system in a textile finishing factory based on actual operational data. The system includes a stenter along with its circulating and induced draft fans, a hot oil boiler and an oil circulating pump. The exergy destructions in each of the components of the overall systems were determined for average values of experimentally measured parameters. Exergy efficiencies of the system components were determined which help in assessing their performance and to establish strategies for improvement. The exergetic efficiencies of the stenter and hot oil boiler were found to be 28.7 and 34.7%, respectively, while the overall exergy efficiency of the system was obtained to be 34.4%. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
For this experimental work, the solar dryer system has been fabricated. Various experiments have been performed to evaluate the performance of the fabricated dryer system. Energy and exergy concepts have been used for the assessment. And comparative analyses have also been done with smooth and rough surfaces: Grade 150 and Grade 300. This experimental work has been concluded as the maximum collector (i.e., 74°C) and cabinet temperatures (i.e., 66°C) are attained at 13:00 p.m. with Grade 300 surface. Maximum moisture loss (i.e., 35 g) and percentage moisture loss (i.e., 7.53%) are recorded at 13:00 p.m. again with a rough surface. Minimum exergy destruction rate (i.e., 0.294 W) but minimum exergy efficiency (i.e., 20.82%) are found at 17:00 p.m. with a black painted surface, which is not an acceptable condition. Maximum energy efficiency (i.e., 35.98%) and heat removal factor (i.e., 0.56) are obtained at 13:00 p.m. with a rough surface. The best performance from the fabricated solar system is received between 12:00 and 14:00 p.m. This study recommends rough surfaces and 12:00–13:00 p.m. timings for the solar drying system as the performance of the system is better in terms of energy–exergy.  相似文献   

17.
In this work, integration of a synthetic natural gas (SNG) production process with an existing biomass CHP steam power cycle is investigated. The paper assesses two different biomass feedstock drying technologies—steam drying and low‐temperature air drying—for the SNG process. Using pinch technology, different levels of thermal integration between the steam power cycle and the SNG process are evaluated. The base case cold gas efficiency for the SNG process is 69.4% based on the lower heating value of wet fuel. The isolated SNG‐related electricity production is increased by a factor of 2.5 for the steam dryer alternative, and tenfold for the low‐temperature air dryer when increasing the thermal integration. The cold gas efficiency is not affected by the changes. Based on an analysis of changes to turbine steam flow, the integration of SNG production with an existing steam power cycle is deemed technically feasible. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
This study deals with exergoeconomic analysis of a combined heat and power (CHP) system along its main components installed in Eskisehir City of Turkey. Quantitative exergy cost balance for each component and the whole CHP system is considered, while exergy cost generation within the system is determined. The exergetic efficiency of the CHP system is obtained to be 38.33% with 51 475.90 kW electrical power and the maximum exergy consumption between the components of the CHP system is found to be 51 878.82 kW in the combustion chamber. On the other hand, the exergoeconomic analysis results indicate that the unit exergy cost of electrical power produced by the CHP system accounts for 18.51 US$ GW?1. This study demonstrates that exergoeconomic analysis can provide extra information than exergy analysis, and the results from exergoeconomic analysis provide cost‐based information, suggesting potential locations for the CHP system improvement. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, a novel poly-generation system for olefin and power production from natural gas is proposed, which integrates hydrocarbon production and the combined cycle power generation. Economic and technological evaluation based on the internal rate of return (IRR) and exergy efficiency is performed. The energy integration results in the proposed poly-generation system for simultaneous production of chemical products (ethylene and propylene) and electricity being more thermodynamically efficient and economically viable than single purpose power generation and chemical products production plants. IRR and exergy efficiency of the proposed poly-generation system are higher than that of natural gas methanol to olefin (NGMTO) system, 18.9% and 49.9%, respectively. The biggest exergy destruction segments, their causes, and possible measures for improvement are investigated simulation and thermodynamic analysis. To analyze the effect of unreacted syngas recycle on the exergy efficiency and economic gains from the proposed poly-generation system, its thermoeconomic optimization model is built by combining economic with thermodynamic analysis. Optimization analysis shows that when 78% of the unreacted syngas is recycled back to the reactor in the methanol synthesization process, the thermoeconomic performance of the poly-generation system is at its optimum.  相似文献   

20.
Specialty crops such as ginseng, herbs and echinacea need to be dried at low temperatures (30–35°C) for product quality optimization. A drying system that is both energy efficient and preserves product quality is desired. A re‐circulating heat pump continuous bed dryer system was designed, constructed and field‐tested for this purpose. The heat pump dryer system was experimentally evaluated using several potential herbal and medicinal crops such as alfalfa, catnip, wormwood, red clover, portulaca, dandelion and ginseng. These crops were dried either in chopped, sliced or whole form, depending on the part of the plant (aerial or root). The specific moisture extraction rates (SMER) obtained for various crops were in the range of 0.06–0.61 kg kWh?1. It took 5 days and 190 kWh of energy to reduce the average moisture content of ginseng roots below 10% (wb), while commercial dryers currently in use would take on an average 14 days and 244 kWh of energy at comparable loading rates. The re‐circulating nature of the heat pump dryer made it 22% more energy efficient and resulted in 65% reduced drying time compared to conventional dryers incorporating electric coil heaters. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号