首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
建立了基于热力学平衡的生物质气化模型,利用平衡模型分析了气化过程的特性,研究了气化过程的反应规律及各种因素对气化性能指标的影响,详细分析了当量比及物料湿度对气体产物成分及气化产物热值的影响.同时,建立了以生物质气为燃料的固体氧化物燃料电池的数学模型,该模型考虑了燃料电池的能斯特电动势及各种极化损失.利用建立的模型分析了操作参数以及物料湿度和生物质种类对生物质气化—燃料电池发电系统性能的影响.结果表明,生物质气化—燃料电池发电系统的发电效率可达30%,热电联产效率最高可达95%以上.  相似文献   

2.
An energy analysis of solid oxide fuel cell (SOFC) power systems with gas recycles fed by natural gas is carried out. Simple SOFC system, SOFC power systems with anode and cathode gas recycle respectively and SOFC power system with both anode and cathode gas recycle are compared. Influences of reforming rate, air ratio and recycle ratio of electrode exhaust gas on performance of SOFC power systems are investigated. Net system electric efficiency and cogeneration efficiency of these power systems are given by a calculation model. Results show that internal reforming SOFC power system can achieve an electrical efficiency of more than 44% and a system cogeneration efficiency including waste heat recovery of 68%. For SOFC power system with anode gas recycle, an electrical efficiency is above 46% and a cogeneration efficiency of 88% is obtained. In the case of cathode gas recycle, an electrical efficiency and a cogeneration efficiency is more than 51% and 78% respectively. Although SOFC system with both anode and cathode gas is more complicated, the electrical efficiency of it is close to 52%.  相似文献   

3.
固体氧化物燃料电池与燃气轮机混合发电系统   总被引:1,自引:0,他引:1  
基于固体氧化物燃料电池系统的高效率、环保性以及排气废热的巨大利用潜能,将其与燃气轮机组成混合发电装置,是一种极有前景的分布式发电方案.文章以SWP公司的加压型SOFC-小型燃气轮机混合循环系统为例,对固体氧化物燃料电池及燃气轮机混合循环系统的原理及发展现状作了分析,为我国固体氧化物燃料电池-燃气轮机混合循环系统的研制提供参考.  相似文献   

4.
Solid oxide fuel cell (SOFC) is a complicated system with heat and mass transfer as well as electrochemical reactions. The flowing configuration of fuel and oxidants in the fuel cell will greatly affect the performance of the fuel cell stack. Based on the developed mathematical model of direct internal reforming SOFC, this paper established a distributed parameters simulation model for cocurrent and countercurrent types of SOFC based on the volume-resistance characteristic modeling method. The steady-state distribution characteristics and dynamic performances were compared and were analyzed for cocurrent and countercurrent types of SOFCs. The results indicate that the cocurrent configuration of SOFC is more suitable with regard to performance and safety.  相似文献   

5.
Fuelling SOFC with reformed fuel can be beneficial due to it being cheaper compared to pure hydrogen. A biomass fuel can be easily modeled as a reformed fuel, as it can be converted into H2 and CO using gasification or biodegradation, the main composition of product from a reformer. Hence in this study it is assumed that feed to the fuel cell contains only H2 and CO. A closed parametric model is formulated. Performance is analyzed with changes in temperature, pressure and fuel ratio; considering the possible voltage losses, like ohmic, activation, mass transfer and fuel crossover. Performance curves consisting of operating voltage, fuel utilization, efficiency, power density and current density are developed for both pure hydrogen and mixture of CO and H2. Variations of open circuit voltage with temperature, power density with current density, operating voltage with current density and maximum power density with fuel utilization are also evaluated.  相似文献   

6.
In the present study a two‐dimensional model of a tubular solid oxide fuel cell operating in a stack is presented. The model analyzes electrochemistry, momentum, heat and mass transfers inside the cell. Internal steam reforming of the reformed natural gas is considered for hydrogen production and Gibbs energy minimization method is used to calculate the fuel equilibrium species concentrations. The conservation equations for energy, mass, momentum and voltage are solved simultaneously using appropriate numerical techniques. The heat radiation between the preheater and cathode surface is incorporated into the model and local heat transfer coefficients are determined throughout the anode and cathode channels. The developed model has been compared with the experimental and numerical data available in literature. The model is used to study the effect of various operating parameters such as excess air, operating pressure and air inlet temperature and the results are discussed in detail. The results show that a more uniform temperature distribution can be achieved along the cell at higher air‐flow rates and operating pressures and the cell output voltage is enhanced. It is expected that the proposed model can be used as a design tool for SOFC stack in practical applications. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
A 2‐D steady‐state mathematical model of a tubular solid oxide fuel cell with indirect internal reforming (IIR‐SOFC) has been developed to examine the chemical and electrochemical processes and the effect of different operating parameters on the cell performance. The conservation equations for energy, mass, momentum as well as the electrochemical equations are solved simultaneously employing numerical techniques. A co‐flow configuration is considered for gas streams in the air and fuel channels. The heat radiation between the preheater and reformer surface is incorporated into the model and local heat transfer coefficients are determined throughout the channels. The model predictions have been compared with the data available in the literature. The model was used to study the effect of various operating conditions on the cell performance. Numerical results indicate that as the cell operating pressure increases, the reforming reaction extends to a larger portion of the cell and the maximum temperature move away from the cell inlet. As a result, a more uniform temperature prevails in the solid structure which reduces thermal stresses. Also, at higher excess air, the rate of heat transfer to the air stream is augmented and the average cell temperature is decreased. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Solid oxide fuel cell (SOFC) due to its high energy conversion rate and low noise can replace diesel energy as the submarine power. The interface thermal stress has an important effect on the stabilization and endurance of SOFC. The thermomechanical model of SOFC, which takes the interfacial layer into account, is developed to analyze the interfacial thermal stresses between electrodes and electrolyte in this paper. Based on the formation mechanism and composition distribution of the interfacial layer and the stress analysis of the half‐cell system, the material property of the interfacial layer is determined and the interfacial thermal stress is expressed accurately. The finite element model of SOFC is employed to investigate the interfacial thermal stress, and the simulated result agrees well with the theoretical result. The modified expressions of interfacial thermal stresses for numerical result are given to analyze the difference between theoretical and simulated results at the free edge of SOFC. The anode‐electrolyte interface needs to be concerned because its thermal stress level is higher and more likely to fail and partially delaminate compared with that of cathode‐electrolyte interface. In addition, the optimization scheme with respect to the interfacial layer thickness is obtained and the interfacial thermal stress decreases with the increase of the interfacial layer thickness. The research provides guidance for determining and minimizing the interfacial thermal stresses of SOFC.  相似文献   

9.
In this study, the balance of plant (BOP) of an ethanol-fueled SOFC is analyzed using the GCTool software package developed by Argonne National Laboratory (ANL). The effects of the excess air ratio and fuel utilization on the electric and heat efficiencies of the SOFC are systematically examined for two reforming methods (steam reforming and auto-thermal reforming) and two flow sheets (BOP A and BOP B). In BOP A, the cathode off-gas is passed directly to the afterburner together with the unreacted fuel, and the hot flue gas exiting the burner is then used to provide the thermal energy required for the ethanol reforming process. In BOP B, the cathode off-gas is passed through a heat exchanger in order to heat the ethanol fuel prior to the reforming process, and is then flowed into the burner with the unreacted fuel. The results show that given an SOFC inlet temperature of 650 °C, a fuel utilization of 70.2% and excess air ratios of 4, 6 and 7, respectively, the overall system efficiency is equal to 74.9%, 72.3% and 71.0%. In general, the results presented in this study provide a useful starting point for the design and development of practical ethanol-fueled SOFC test systems.  相似文献   

10.
A high temperature gradient within a solid oxide fuel cell (SOFC) stack is considered a major challenge in SOFC operations. This study investigates the effects of the key parameters on SOFC system efficiency and temperature gradient within a SOFC stack. A 40-cell SOFC stack integrated with a bio-oil sorption-enhanced steam reformer is simulated using MATLAB and DETCHEM. When the air-to-fuel ratio and steam-to-fuel ratio increase, the stack average temperature and temperature gradient decrease. However, a decrease in the stack temperature steadily reduces the system efficiency owing to the tradeoff between the stack performance and thermal balance between heat recovered and consumed by the system. With an increase in the bio-oil flow rate, the system efficiency decreases because of the lower resident time for the electrochemical reaction. This is not, however, beneficial to the maximum temperature gradient. To minimize the temperature gradient of the SOFC stack, a decrease in the bio-oil flow rate is the most effective way. The maximum temperature gradient can be reduced to 14.6 K cm−1 with the stack and system efficiency of 76.58 and 65.18%, respectively, when the SOFC system is operated at an air-to-fuel ratio of 8, steam-to-fuel ratio of 6, and bio-oil flow rate of 0.0041 mol s−1.  相似文献   

11.
12.
A utilized regenerative solid oxide fuel cell (URSOFC) provides the dual function of performing energy storage and power generation, all in one unit. When functioning as an energy storage device, the URSOFC acts like a solid oxide electrolyzer cell (SOEC) in water electrolysis mode; whereby the electric energy is stored as (electrolyzied) hydrogen and oxygen gases. While hydrogen is useful as a transportation fuel and in other industrial applications, the URSOFC also acts as a solid oxide fuel cell (SOFC) in power generation mode to produce electricity when needed. The URSOFC would be a competitive technology in the upcoming hydrogen economy on the basis of its low cost, simple structure, and high efficiency. This paper reports on the design and manufacturing of its anode support cell using commercially available materials. Also reported are the resulting performance, both in electrolysis and fuel cell modes, as a function of its operating parameters such as temperature and current density. We found that the URSOFC performance improved with increasing temperature and its fuel cell mode had a better performance than its electrolysis mode due to a limited humidity inlet causing concentration polarization. In addition, there were great improvements in performance for both the SOFC and SOEC modes after the first test and could be attributed to an increase in porosity within the oxygen electrode, which was beneficial for the oxygen reaction.  相似文献   

13.
Non-sealed solid oxide fuel cell (NS-SOFC) micro-stacks with two gas channels were fabricated and operated successfully under various CH4/O2 gas mixtures in a box-like stainless-steel chamber. The cells with an anode-facing-cathode configuration were connected in serial by zigzag sliver sheets. Each cell consisted of the Ni/yttria-stabilized zirconia (YSZ) anode, the YSZ electrolyte, and the Sm0.2Ce0.8O1.9-impregnated (La0.75Sr0.25)0.95MnO3 cathode. In this configuration, to ensure the identical gas distribution over the electrode surfaces, two gas channels with small vents flanking the stacks were used as gas channels of methane and oxygen for anodes and cathodes, respectively. The selectivity requirement of both the anode and cathode for the oxidation and reduction of CH4 and O2 was lowered and the sheets could extend the residence time of gas flow over the electrode surface. By the direct flame heat with a liquefied petroleum gas burner, the stacks presented a rapid start-up and full utilization of the exhaust gas. Eventually, an open-circuit voltage (OCV) of 1.8 V and maximum power output of 276 mW was produced by a two-cell stack. For a four-cell stack, a maximum power output of 373 mW was obtained.  相似文献   

14.
Metal-supported solid oxide fuel cells (MS-SOFCs) containing porous 430L stainless steel supports, YSZ electrolytes and porous YSZ cathode backbones are fabricated by tape casting, laminating and co-firing in a reducing atmosphere. Nano-scale Ni and La0.6Sr0.4Fe0.9Sc0.1O3−δ (LSFSc) coatings are impregnated onto the internal surfaces of porous 430L and YSZ, acting as the anode and the cathode catalysts, respectively. The resulting MS-SOFCs exhibit maximum power densities of 193, 418, 636 and 907 mW cm−2 at 650, 700, 750 and 800 °C, respectively. Nevertheless, a continuous degradation in the fuel cell performance is observed at 650 °C and 0.7 V during a 200-h durability measurement. Possible degradation mechanisms were discussed in detail.  相似文献   

15.
In laboratory studies of solid oxide fuel cell (SOFC), performance testing is commonly conducted upon button cells because of easy implementation and low cost. However, the comparison of SOFC performance testing results from different labs is difficult because of the different testing procedures and configurations used. In this paper, the SOFC button cell testing process is simulated. A 2‐D numerical model considering the electron/ion/gas transport and electrochemical reactions inside the porous electrodes is established, based on which the effects of different structural parameters and configurations on SOFC performance testing results are analyzed. Results show that the vertical distance (H) between the anode surface and the inlet of the anode gas channel is the most affecting structure parameter of the testing device, which can lead to up to 18% performance deviation and thus needs to be carefully controlled in SOFC button cell testing process. In addition, the current collection method and the configuration of gas tubes should be guaranteed to be the same for a reasonable and accurate comparison between different testing results. This work would be helpful for the standardization of SOFC button cell testing.  相似文献   

16.
This paper focuses on multi-objective optimisation (MOO) to optimise the planar solid oxide fuel cell (SOFC) stacks performance using a genetic algorithm. MOO problem does not have a single solution, but a complete Pareto curve, which involves the optional representation of possible compromise solutions. Here, two pairs of different objectives are considered as distinguished strategies. Optimisation of the first strategy predicts a maximum power output of 108.33 kW at a breakeven per-unit energy cost of 0.51 $/kWh and minimum breakeven per-unit energy cost of 0.30 $/kWh at a power of 42.18 kW. In the second strategy, maximum efficiency of 63.93%at a breakeven per-unit energy cost of 0.42 $/kWh is predicted, while minimum breakeven per-unit energy cost of 0.25 $/kWh at efficiency of 48.3% is obtained. The present study creates the basis for selecting optimal operating conditions of SOFC under the face of multiple conflicting objectives.  相似文献   

17.
The potential of a novel co-doped ceria material Sm0.075Nd0.075Ce0.85O2−δ as an electrolyte was investigated under fuel cell operating conditions. Conventional colloidal processing was used to deposit a dense layer of Sm0.075Nd0.075Ce0.85O2−δ (thickness 10 μm) over a porous Ni-gadolinia doped ceria anode. The current-voltage performance of the cell was measured at intermediate temperatures with 90 cm3 min−1 of air and wet hydrogen flowing on cathode and anode sides, respectively. At 650 °C, the maximum power density of the cell reached an exceptionally high value of 1.43 W cm−2, with an area specific resistance of 0.105 Ω cm2. Impedance measurements show that the power density decrease with decrease in temperature is mainly due to the increase in electrode resistance. The results confirm that Sm0.075Nd0.075Ce0.85O2−δ is a promising alternative electrolyte for intermediate temperature solid oxide fuel cells.  相似文献   

18.
While the integration of base-load fuel cells into the built environment is expected to provide numerous benefits to the user, the steady-state and dynamic behavior of these stationary fuel cell systems can produce an undesirable impact on the grid distribution circuit at the point of connection. In the present paper, a load-following active power filter (LFAPF) is proposed to mitigate the grid impact of such systems and instead improve overall local power quality. To evaluate the strategy, the LFAPF is integrated into a SOFC system inverter with one-cycle control (OCC) to provide the fundamental benefits of a traditional active power filter (APF) while also damping out short-term line current transients. The LFAPF benefit is illustrated through simulation of an SOFC interconnected with the utility electric distribution system and a building electricity demand that is modeled as a dynamic non-linear load. Three installation cases are examined: (1) a load-following SOFC, (2) a base-loaded SOFC, and (3) an offline SOFC. Without LFAPF, the load-following SOFC causes load transients due to the finite SOFC response time, and the base-loaded SOFC case has transients that appear more severe because they represent a larger overall percentage of the grid-provided load. The integration of an LFAPF improves the steady-state behavior over the base case and mitigates voltage sags and step changes. Thus integrating an LFAPF can, by providing useful services to both the utility and the end-user, facilitate the integration of an SOFC into the distribution system.  相似文献   

19.
Solid oxide fuel cell (SOFC) is a promising technology for decentralized power generation and cogeneration. This technology has several advantages: the high electric efficiency, which can be theoretically improved through integration in power cycles; the low emissions; and the possibility of using a large variety of gaseous fuels.  相似文献   

20.
This study presents a two-dimensional mathematical model of a direct internal reforming solid oxide fuel cell (DIR-SOFC) stack which is based on the reforming reaction kinetics, electrochemical model and principles of mass and heat transfer. To stimulate the model and investigate the steady and dynamic performances of the DIR-SOFC stack, we employ a computational approach and several cases are used including standard conditions, and step changes in fuel flow rate, air flow rate and stack voltage. The temperature distribution, current density distribution, gas species molar fraction distributions and dynamic simulation for a cross-flow DIR-SOFC are presented and discussed. The results show that the dynamic responses are different at each point in the stack. The temperature gradients as well as the current density gradients are large in the stack, which should be considered when designing a stack. Further, a moderate increase in the fuel flow rate improves the performances of the stack. A decrease in the air flow rate can raise the stack temperature and increase fuel and oxygen utilizations. An increased output voltage reduces the current density and gas utilizations, resulting in a decrease in the temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号