首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With increasing size of wind turbines, new approaches to load control are required to reduce the stresses in blades. Experimental and numerical studies in the fields of helicopter and wind turbine blade research have shown the potential of shape morphing in reducing blade loads. However, because of the large size of modern wind turbine blades, more similarities can be found with wing morphing research than with helicopter blades. Morphing technologies are currently receiving significant interest from the wind turbine community because of their potential high aerodynamic efficiency, simple construction and low weight. However, for actuator forces to be kept low, a compliant structure is needed. This is in apparent contradiction to the requirement for the blade to be load carrying and stiff. This highlights the key challenge for morphing structures in replacing the stiff and strong design of current blades with more compliant structures. Although not comprehensive, this review gives a concise list of the most relevant concepts for morphing structures and materials that achieve compliant shape adaptation for wind turbine blades.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
A brief summary of the main challenges of rotor design in wind energy conversion (WEC) systems, most notably the horizontal axis wind turbine (HAWT), are presented. One of the limiting factors in HAWT design is choosing the rated capacity to maximize power output and turbine longevity. One such strategy to accomplish this goal is to widen the operational range of the WEC system by using pitch or torque control, which can be costly and subject to mechanical failure. We present a morphing airfoil concept, which passively controls airfoil pitch through elastic deformation. As a justification of the concept, a two‐dimensional fluid‐structure interaction routine is used to simulate the aeroelastic response of a symmetric NACA 0012 blade subjected to variable loading. The results suggest that the morphing blade can be designed to offer superior average lift to drag ratios over a specified range of attack angles by up to 4.2%, and possibly even higher. This infers that the morphing blade design can increase the power production of WEC systems while conceivably reducing cost because the passive deformation of the morphing turbine does not require active control systems that come at an added upfront and maintenance cost. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
叶片是风力机最重要的组成部分,在不同的风能资源情况下,翼型的选择对垂直轴风力机气动特性有着重要的影响。文章分别以NACA0018翼型(对称翼型)和NACA4418翼型(非对称翼型)建立3叶片H型垂直轴风力机二维仿真模型。应用数值模拟的研究方法,从功率系数、单个叶片切向力系数等方面比较两种风力机模型在不同叶尖速比下的气动特性,并采用风洞实验数据验证了流场计算的准确性。CFD计算结果表明:在低叶尖速比下,NACA4418翼型风力机气动特性优于NACA0018翼型风力机,适用于低风速区域;在高叶尖速比下,NACA0018翼型风力机气动特性较好,适用于高风速地区。而且在高叶尖速比时,NACA0018翼型在上风区时,切向力系数平均值要高于NACA4418翼型,在下风区时,NACA418翼型切向力系数平均值高。该研究可为小型垂直轴风力机翼型的选择提供参考。  相似文献   

4.
针对自行研制的NACA4415翼型水平轴风力机,通过流固耦合的数值模拟计算方法,考虑气动力和离心力以及两者耦合作用,选取叶片最大弦长、中部弦长、气动中心线展向以及最大应力点位置,分析风力机叶片在不同工况下的应力特性分布规律。结果表明:在气动力作用下,叶片相同弦长位置处迎风面应力小于背风面应力,且随尖速比和入流风速增大而增大,最大应力点位置随着尖速比增大沿翼展向外且靠近叶片前缘方向延伸;在离心力作用下,叶片相同弦长位置处迎风面应力大于背风面应力,且随尖速比增大而增大,而最大应力点均在叶根最大弦长位置(9.93 mm,10.80 mm,-126.33 mm);在耦合作用下,叶片相同弦长位置处迎风面应力大于背风面应力,随尖速比和入流风速增大而增大,且依次大于气动力和离心力产生的应力,而最大应力点均在叶根最大弦长位置。仿真结果对于风力机翼型的选择及优化设计具有重要的理论意义及参考价值。  相似文献   

5.
A few recent works have suggested a morphing blade for wind turbine energy conversion. The concept is derived from fin and wing motions that better adapt to varying load conditions. Previous research has provided the fluid mechanic justification of this new concept. This paper establishes a parametric relationship between an asymmetric wind turbine blade and constituent material modulus to predict the geometric response of the morphing blade for a given material characteristic. The airfoil’s trailing edge deflection is associated to a prescribed fluid exit angle via the Moment Area (MA) method. Subsequently, a mathematical model is derived to predict material deformation with respect to imparted aerodynamic forces. Results show that an airfoil, much like a tapered beam, can be modeled as a non-prismatic cantilevered beam using this well established method.  相似文献   

6.
Ryan Kyle  Fan Wang  Brian Forbes 《风能》2020,23(4):953-966
Armour EDGE is a novel shield developed to protect the leading edge of wind turbine blades from erosion. The aerodynamic impact on aerofoils of National Renewable Energy Laboratory (NREL) 5MW wind turbine has been investigated using 2D fully turbulent computational fluid dynamics (CFD), with three profiles at critical locations along the blade simulated both with and without the shield to compare aerodynamic performance. Two wind speeds were investigated that reflect regular operating conditions: at rated speed of 11.4 m/s and a below rated speed of 7 m/s. The results showed that the presence of the shield during rated wind speed reduced the drag by as much as 4.5%, where the lift‐to‐drag ratio increased by a maximum of 4%. At the below rated wind speeds, the shield had negligible impact on the performance of all but one National Advisory Committee for Aeronautics (NACA) 64‐618 profile, which resulted in an increase in the drag coefficient of 7%. It was also found that the suction side of the aerofoil is much more sensitive to leading edge protection placement than the pressure side. It was concluded that the erosion shield as a method of leading edge protection, with a gradual transition from shield to blade, will not have a major impact on the aerodynamic performance of a multi‐megawatt wind turbine blade and could slightly increase aerofoil efficiency at high wind speeds.  相似文献   

7.
常规风力机叶片的优化设计都是从二维翼型开始的,且翼型总是以升阻比最大为优化目标。然而,二维翼型的升阻比最大和三维叶片的高风能利用率与低气动载荷有本质的不同,采用以往的叶片优化方法常常会在提高风能利用率的同时,使叶片所受的气动载荷也提高。针对这一问题,提出基于多岛遗传算法和动量叶素理论,在给定风况条件下,以加权风能利用率最高与气动载荷最小为目标函数,以叶片各个截面的翼型型线及扭角作为设计变量,对三维叶片开展多目标优化方法设计研究。并对某实际NREL Phase VI叶片进行优化设计,结果表明:在给定风况下相比原叶片,优化叶片在风能利用率提升了3.06%的基础上,叶根弯矩降低了11.68%。在变转速与变风况下,优化叶片的气动效率整体提升,叶根弯矩明显降低。  相似文献   

8.
基于BLADED软件平台,对TMT40.3大型风力机叶片的气动性能进行了分析.分析结果表明:TMT40.3大型风力机叶片应用在GL3A风场时的额定功率能达到1 650 kW,所承受的疲劳强度和极限载荷均能满足该款风力机叶片的设计要求,在叶尖速比为7.8~11.4的风能利用系数均在0.46以上,最高可达0.486,具有较好的气动性能和较宽的风速适应范围.  相似文献   

9.
Horizontal axis wind turbines (HAWTs) experience three‐dimensional rotational and unsteady aerodynamic phenomena at the rotor blades sections. These highly unsteady three‐dimensional effects have a dramatic impact on the aerodynamic load distributions on the blades, in particular, when they occur at high angles of attack due to stall delay and dynamic stall. Unfortunately, there is no complete understanding of the flow physics yet at these unsteady 3D flow conditions, and hence, the existing published theoretical models are often incapable of modelling the impact on the turbine response realistically. The purpose of this paper is to provide an insight on the combined influence of the stall delay and dynamic stall on the blade load history of wind turbines in controlled and uncontrolled conditions. New dynamic stall vortex and nonlinear tangential force coefficient modules, which integrally take into account the three dimensional rotational effect, are also proposed in this paper. This module along with the unsteady influence of turbulent wind speed and tower shadow is implemented in a blade element momentum (BEM) model to estimate the aerodynamic loads on a rotating blade more accurately. This work presents an important step to help modelling the combined influence of the stall delay and dynamic stall on the load history of the rotating wind turbine blades which is vital to have lighter turbine blades and improved wind turbine design systems.  相似文献   

10.
Presented is a robust optimization strategy for the aerodynamic design of horizontal axis wind turbine rotors including the variability of the annual energy production because of the uncertainty of the blade geometry caused by manufacturing and assembly errors. The energy production of a rotor designed with the proposed robust optimization approach features lower sensitivity to stochastic geometry errors with respect to that of a rotor designed with the conventional deterministic optimization approach that ignores these errors. The geometry uncertainty is represented by normal distributions of the blade pitch angle, and the twist angle and chord of the airfoils. The aerodynamic module is a blade‐element momentum theory code. Both Monte Carlo sampling and the univariate reduced quadrature technique, a novel deterministic uncertainty analysis method, are used for uncertainty propagation. The performance of the two approaches is assessed in terms of accuracy and computational speed. A two‐stage multi‐objective evolution‐based optimization strategy is used. Results highlight that, for the considered turbine type, the sensitivity of the annual energy production to rotor geometry errors can be reduced by reducing the rotational speed and increasing the blade loading. The primary objective of the paper is to highlight how to incorporate an efficient and accurate uncertainty propagation strategy in wind turbine design. The formulation of the considered design problem does not include all the engineering constraints adopted in real turbine design, but the proposed probabilistic design strategy is fairly independent of the problem definition and can be easily extended to turbine design systems of any complexity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
12.
This paper presents a model for the evaluation of aerodynamic and inertial contributions to a vertical-axis wind turbine (VAWT) blade deformation. Through the use of a specially designed coupling code, a solid modeling software, capable of generating the desired blade geometry depending on the design geometric parameters, is linked to a finite volume Computational Fluid Dynamic (CFD) code for the calculation of rotor performance and to a Finite Element Method (FEM) code for the structural design analysis of rotor blades. After describing the computational model and the relative validation procedure, a full RANS unsteady calculation is presented for a three-bladed rotor architecture, characterized by a NACA 0012 profile. Flow field characteristics are investigated for a constant unperturbed free-stream wind velocity of 9 m/s, determining the torque coefficient generated from the three blades as a function of rotor azimuthal coordinate. The emphasis is subsequently placed on obtaining an estimate for both pressure/tangential forces and centrifugal ones to blade structural loadings, thus assessing the influence of aerodynamic and inertial contributions to blade stresses and deformations.  相似文献   

13.
The aerodynamic characteristics of wind turbines are closely related to the geometry of their blades. The innovation and the technological development of wind turbine blades can be centred on two tendencies. The first is to improve the shape of existing blades; the second is to design new shapes of blades. The aspiration in the two cases is to achieve an optimal circulation and hence enhancing some more ambitious aerodynamic characteristics. This paper presents an inverse design procedure, which can be adapted to both thin and thick wind turbine blade sections aiming to optimise the geometry for a prescribed distribution of bound vortices. A method for simulating the initial contour of the blade section is exposed, which simultaneously satisfy the aerodynamic and geometrical constraints under nominal conditions. A detailed definition of the function characterising the bound vortex distribution is presented. The inviscid velocity field and potential function distributions are obtained by the singularities method. In the design method implemented, these distributions and the circulation of bound vortices on the camber line of the blade profile, are used to rectify its camber in an iterative calculation leading to the final and optimal form of the blade section once convergence is attained. The scheme proposed has been used to design the entire blade of the wind turbine for a given span-wise distribution of bound circulation around the blade contour.  相似文献   

14.
基于片条理论,考虑了叶尖损失、叶根损失、叶柵影响和重载荷下对片条理论参数修正的情况下,完成了某1 MW水平轴风力机叶片的气动设计,并对其气动性能进行了评估;最后根据IEC规范对叶片在不同风况状态下进行载荷计算,所得结果可为同类风力机气动设计和结构设计提供参考。  相似文献   

15.
百千瓦级叶片一般采用定桨方式运行,依靠叶片失速进行功率控制,机组运行过程中无法维持较高的效率。基于100 kW变速变桨机组的运行特征,提出了一种100 kW级中型叶片的设计方法。气动设计采用了BEM方法,利用Harp_opt中的优化算法获得较高的气动性能;结构及载荷设计参考IEC标准进行,采用Focus进行铺层设计及结构特性分析。所设计叶片的长度为10.029 m左右,极限及疲劳载荷特性满足GL IIA类风场的运行要求。  相似文献   

16.
风雨作用下雨滴会改变风力机流场及叶片气动力,影响风力机的安全和稳定运行.以某1.5 MW风力机为研究对象,基于多参考坐标系法和欧拉两相流法,得到风雨作用下风力机流场和雨滴收集率分布;在此基础上,结合欧拉壁面液膜模型对雨滴在叶片表面的累积过程进行计算,分析叶片气动性能.计算表明:风雨作用下叶片表面雨滴收集率沿展向逐渐增大...  相似文献   

17.
In the last decade, vertical axis wind turbines acquired notable interest in the renewable energy field. Different techniques are available to perform aerodynamic and structural simulation of these complex machines, but, to the authors' best knowledge, a comprehensive approach, which includes an automatic optimization algorithm, has never been developed. In this work, a methodology to conduct an efficient aero‐structural design of Darrieus vertical axis wind turbine is presented. This relies on a code‐to‐measurement validated simulation tool based on Blade Element‐Momentum algorithm adopting a particular set of aerodynamic coefficients, and a code‐to‐code validated structural model based on the Euler–Bernoulli beam theory. The algorithms are coupled with a Genetic Algorithm to perform the optimization. The adopted decisional parameters allow to completely vary the blade shape and the airfoil geometry to reduce the structural stress and improve the aerodynamic performance. Different individuals are explored to perform a wide aerodynamic and structural analysis of improved configurations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Wind turbine aerodynamic response under atmospheric icing conditions   总被引:1,自引:0,他引:1  
This article deals with the atmospheric ice accumulation on wind turbine blades and its effect on the aerodynamic performance and structural response. The role of eight atmospheric and system parameters on the ice accretion profiles was estimated using the 2D ice accumulation software lewice Twenty‐four hours of icing, with time varying wind speed and atmospheric icing conditions, was simulated on a rotor. Computational fluid dynamics code, FLUENT, was used to estimate the aerodynamic coefficients of the blade after icing. The results were also validated against wind tunnel measurements performed at LM Wind Power using a NACA64618 airfoil. The effects of changes in geometry and surface roughness are considered in the simulation. A blade element momentum code WT‐Perf is then used to quantify the degradation in performance curves. The dynamic responses of the wind turbine under normal and iced conditions were simulated with the wind turbine aeroelastic code HAWC2. The results show different behaviors below and above rated wind speeds. In below rated wind speed, for a 5 MW virtual NREL wind turbine, power loss up to 35% is observed, and the rated power is shifted from wind speed of 11 to 19 m s?1. However, the thrust of the iced rotor in below rated wind speed is smaller than the clean rotor up to 14%, but after rated wind speed, it is up to 40% bigger than the clean rotor. Finally, it is briefly indicated how the results of this paper can be used for condition monitoring and ice detection. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
江波  韩中合 《节能》2012,31(9):40-42
风力机翼型气动性能分析是风力机气动设计和运行优化的重要基础。采用NUMECA软件对弯度为4%的风力机NACA4412翼型进行气动数值模拟,并与实验数据进行比较,取得比较一致的结果。在此基础上,对NACA2412、NACA4412、NACA6412不同弯度的翼型进行模拟分析,对三种翼型在不同攻角下的气动性能进行了比较,为风力机翼型弯度选择和翼型改型设计提供参考意见。  相似文献   

20.
This paper presents the design and validation of the high performance and low noise Chong Qing University and Technical University of Denmark LN1 (CQU‐DTU‐LN1) series of airfoils for wind turbine applications. The new design method uses target characteristics of wind turbine airfoils in the design objective, such as airfoil lift coefficient, drag coefficient and lift‐drag ratio, and minimizes trailing edge noise as a constraint. To express airfoil shape, an analytical expression is used. One of the main advantages of the present design method is that it produces a highly smooth airfoil shape that can avoid the problem of curvature discontinuity. An airfoil profile with discontinuous curvature can produce a discontinuous pressure gradient (i.e., local flow acceleration or deceleration), which enhances flow separation and thus decreases the airfoil performance. By combining the design method with the blade element momentum theory, the viscous‐inviscid xfoil code and an airfoil self‐noise prediction model, an optimization algorithm has been developed for designing the high performance and low noise CQU‐DTU‐LN1 series of airfoils with targets of maximum power coefficient and low noise emission. To validate the airfoil design, CQU‐DTU‐LN118 airfoil has been tested experimentally in the acoustic wind tunnel located at the Virginia Polytechnic Institute and State University (Virginia Tech), USA. To show the superiority of the CQU‐DTU‐LN1 airfoils, comparisons on aerodynamic performance and noise emission between the CQU‐DTU‐LN118 airfoil and the National Advisory Committee for Aeronautics (NACA) 64618 airfoil, which is used in modern wind turbine blades, are carried out. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号