首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The present study examines the peristaltic flow of a PTT nanofluid in a diverging tube. This is the first article on the PTT peristaltic flow in nanofluid. The governing equations for PTT nanofluid are modelled in a cylindrical coordinates system. The flow is investigated in a wave frame of reference moving with velocity of the wave c1. Temperature and nanoparticle equations are coupled so the homotopy perturbation method is used to calculate the solutions of temperature and nanoparticle equations, while exact solutions have been evaluated for the velocity profile and pressure gradient. The solutions analyze the Brownian motion number Nb, thermophoresis number Nt, local temperature Grashof number Br, and local nanoparticle Grashof number Gr. The effects of various physical parameters of the model are investigated and discussed. It is observed that the pressure rise decreases with the increase in thermophoresis number Nt. Increases are noted in the Brownian motion parameter Nb and the thermophoresis parameter Nt as the temperature profile increases. Streamlines have been plotted at the end of the article. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20386  相似文献   

2.
In this article, the problem of combined forced and free convection in vertical porous and regular channels for both regular fluids and nanofluids has been solved using the CFD technique in the entrance regions of momentum and heat transfer taking into account the influences of viscous heating and inertial force. In this regard, various types of viscous dissipation models reported in the literature such as the Darcy model, the power of the drag force model, and the clear fluid‐compatible model were applied. In the case of nanofluid flow, both the Brownian and thermophoresis molecular transfer mechanisms were considered. The dimensionless distributions of velocity, temperature, and the volume fraction of nanoparticles were determined in terms of corresponding dimensionless numbers such as the Grashof, Reynolds, Forchheimer, Brinkman, and Darcy numbers. The predicted results were validated using fully‐developed distributions of velocity and temperature. In addition, the influences of the Grashof number value on the temperature and velocity distributions in the entrance and fully‐developed regions were examined carefully. In addition, temperature and velocity distributions of nanofluids and regular fluids in porous and regular channels were compared. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 43(3): 243–269, 2014; Published online 30 September 2013 in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21079  相似文献   

3.
This investigation describes the peristaltic motion of a magnetohydrodynamic (MHD) Oldroyd‐B fluid with heat and mass transfer. An incompressible Oldroyd‐B fluid is considered in a channel with flexible walls. The relevant equations are developed by employing equations of continuity, momentum, energy, and concentration. Expressions of stream function, temperature, concentration field, and heat transfer coefficient are presented when the wave number is small. The obtained solutions are graphically discussed for the several interesting parameters entering into the problem. It is found that relaxation and retardation times have opposite effects on the size of the trapped bolus. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20380  相似文献   

4.
This article is concerned with the steady laminar magnetohydrodynamic boundary‐layer flow past a stretching surface with uniform free stream and internal heat generation or absorption in an electrically conducting fluid. A constant magnetic field is applied in the transverse direction. A uniform free stream of constant velocity and temperature is passed over the sheet. The effects of free convection and internal heat generation or absorption are also considered. The governing boundary layer and temperature equations for this problem are first transformed into a system of ordinary differential equations using similarity variables, and then solved by a new analytical method and numerical method, by using a fourth‐order Runge–Kutta and shooting method. Velocity and temperature profiles are shown graphically. It is shown that the differential transform method solutions are only valid for small values of independent variables but the results obtained by the DTM‐Padé are valid for the entire solution domain with high accuracy. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.21054  相似文献   

5.
In the present analysis we discuss the effects of mixed convective heat and mass transfer on the peristaltic flow of a non‐Newtonian fluid in a vertical asymmetric channel. The flow is investigated in a wave frame of reference moving with the velocity c away from the fixed frame. The governing equations for the present flow problem are first modeled and then discussed. The analytical solution of the present flow problem is discussed using regular perturbation technique. The graphical results are discussed to see the effects of various physical parameters of interest. © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21020  相似文献   

6.
The present article investigates the influence of Dufour and Soret effects on mixed convection heat and mass transfer over a vertical plate in a doubly stratified fluid‐saturated porous medium. The plate is maintained at a uniform and constant wall heat and mass fluxes. The Darcy–Forchheimer model is employed to describe the flow in porous medium. The nonlinear governing equations and their associated boundary conditions are initially transformed into dimensionless forms. The resulting system of nonlinear partial differential equations is then solved numerically by the Keller‐box method. The variation of the dimensionless velocity, temperature, concentration, heat, and mass transfer rates for different values of governing parameters involved in the problem are analyzed and presented graphically. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21114  相似文献   

7.
The flow of hybrid nanoparticles with significant physical parameters with different base fluids in the presence of Biot number, velocity slip, and MHD effects has not been explored so far, particularly for a circular cylinder. Therefore, the current report is presented to offer a numerical solution for hybrid nanoparticles with base fluids (water and ethylene glycerol) via a circular cylinder. The physical situation is interpreted in terms of partial differential equations and is converted into ordinary differential equations after applying the similarity transformation. The results are presented in both tabular and graphical forms. The impact of physical parameters on velocity distribution is examined through graphs. The comparative results of hybrid nanoparticles for distinct base fluids as ethylene glycol and water are proposed and the hybrid nanoparticles with base fluid water seems to be greater than that of the hybrid nanoparticles with base fluid EG. The temperature profile of hybrid nanoparticles is found to be a decreasing function with growth in velocity slip parameter but an opposite trend is noted in case of nanoparticles . The skin friction and Nusselt number augmented for the increase in magnetic field, velocity slip, and nanoparticle while it shows a decreasing trend toward thermal slip parameter. For the both cases, improvement in Biot number helps enhance the heat transfer constantly.  相似文献   

8.
In the present article we talk about the influence of a nanofluid on the peristaltic flow of a Carreau fluid model in the presence of an inclined channel and magnetic field. The mathematical modeling of the proposed problem is given for the two‐ dimensional and directional flow. The governing highly nonlinear coupled equations are simplified by means of the assumptions of long wavelength and low Reynolds number approximation. The solutions of the simplified coupled nonlinear equations are calculated using an analytical approach. At the end, graphical results are displayed to show the effects of various emerging parameters of interest. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 43(4): 368–383, 2014; Published online 3 October 2013 in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21082  相似文献   

9.
This paper examines the influence of magnetic field on peristaltic flow of synovial nanofluid in an asymmetric channel. Hall current, thermophoresis, and Brownian motion effects are taken into account. Our problem is discussed for two models, in the first model which referred as Model (I), viscosity is considered exponentially dependent on the concentration, and Model (II) Shear thinning index is considered function of concentration. The governing problem is reformulated under the assumption of low Reynolds number and high wavelength. Resulting system of equations are solved numerically with the aid of Parametric ND Solve. Detailed comparisons have been made between Model (I) and Model (II) and found unrealistic results between them. Results for velocity, temperature and nanoparticle concentration distributions as well as pressure gradient and pressure rise are offered graphically for different values of various physical parameters. It is found that the velocity of fluid decreases in semi‐curved lines in case of Model (I) with the increase of while, in Model (II) it decreases in the left side of the channel and increases in the right side of that channel. Such models are applicable to rheumatoid arthritis treatment.  相似文献   

10.
This paper look at the effects of heat transfer on peristaltic flow of Walter's B fluid in an asymmetric channel. The regular perturbation method is used to solve the governing equations by taking the wave number as the small parameter. Expressions for stream function, temperature distribution, and heat transfer coefficient are presented in explicit form. Solutions are analyzed graphically for different values of arising parameters. It has been found that these parameters affect considerably the considered flow characteristics. Results show that with an increase in the Eckert and Prandtl numbers, the temperature and heat transfer coefficient increase. Further, the absolute value of the heat transfer coefficient increases with an increasing viscoelastic parameter. Comparison with published results for viscous fluid is also presented. © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21021  相似文献   

11.
Numerical investigation on forced (assisted) convection heat transfer in a two‐dimensional horizontal porous channel with an open cavity is studied in this article. A non‐uniform heat flux is considered to be located on the bottom surface of the cavity. The rest of the surfaces are taken to be perfectly insulated. The physical domain is filled with a water‐based nanofluid containing TiO2 nanoparticles. The fluid enters from the left and exits from the right with initial velocity Ui and temperature Ti. Governing equations are discretized using the penalty finite element method. The simulation is carried out for a wide range of Reynolds number Re (= 10–500) and Darcy number Da (= 10?5–∞). Results are presented in the form of streamlines, isothermal lines, local and average Nusselt numbers, average temperatures of the fluid, horizontal and vertical velocities at mid‐height of the channel and mean velocity fields for various Re and Da. The enhancement of heat transfer rate is caused by the increasing Re and falling Da. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.21046  相似文献   

12.
In this study the momentum and energy equations are solved to analyze the flow between two parallel plates by employing second‐order velocity slip and temperature jump conditions. The flow is considered to be laminar, incompressible, hydrodynamically/thermally fully developed, and steady state. In addition to the isoflux condition, viscous dissipation is included in the analysis. Closed form expressions for the temperature field and Nusselt number are obtained as a function of the Knudsen number and Brinkman number. The Nusselt number obtained by employing the second‐order model is found to be lower compared to the continuum value and agrees well with the other theoretical models. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21116  相似文献   

13.
An analysis is presented to investigate the effects of a chemical reaction on an unsteady flow of a micropolar fluid over a stretching sheet embedded in a non‐Darcian porous medium. The governing partial differential equations are transformed into a system of ordinary differential equations by using similarity transformation. The resulting nonlinear coupled differential equations are solved numerically by using a fourth‐order Runge–Kutta scheme together with shooting method. The influence of pertinent parameters on velocity, angular velocity (microrotation), temperature, concentration, skin friction coefficient, Nusselt number, and Sherwood number has been studied and numerical results are presented graphically and in tabular form. Comparisons with previously published work are performed and the results are found to be in excellent agreement. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21090  相似文献   

14.
The problem of steady two‐dimensional free convective flow of a Walters fluid (model B ′) in a porous medium between a long vertical wavy wall and parallel flat wall in the presence of a heat source is discussed. The channel is divided into two passages by means of a thin, perfectly conductive plane baffle and each stream will have its own pressure gradient and hence the velocity will be individual in each stream. The governing equations of the fluid and the heat transfer have been solved subject to the relevant boundary conditions by assuming that the solution consists of two parts: a mean part and disturbance or perturbed part. Exact solutions are obtained for the mean part and the perturbed part is solved using long wave approximation. Results are presented graphically for the distribution of velocity and temperature fields for varying physical parameters such as Grashof number, wall temperature ratio, porous parameter, heat source/sink parameter, product of non‐dimensional wave number, and space‐coordinate and viscoelastic parameter at different positions of the baffle. The relevant flow and heat transfer characteristics, namely, skin friction and the rate of heat transfer at both walls, has been discussed in detail. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21118  相似文献   

15.
In this investigation, the boundary layer flow and heat transfer analysis in a Maxwell fluid over an exponentially continuous moving sheet are studied. The transformed boundary layer equations are solved numerically for a non‐similar solution using a shooting method with the Runge–Kutta algorithm. The purpose of this article is to look into the influence of the Deborah number on the velocity, temperature, and Nusselt number. The obtained results show that an increase in the Deborah number decreases the fluid velocity and boundary layer thickness. On the other hand, it increases the temperature and thermal boundary layer thickness. It is also found that the numerical results are in excellent agreement with the previous existing results for the case of a Newtonian fluid (λ = 0). © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 43(3): 233–242, 2014; Published online 30 August 2013 in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21074  相似文献   

16.
In this essay, the magnetohydrodynamic flow of a Carreau nanoliquid upon a radiative stretching plate has been reviewed. The impacts of Joule heating and thermal ray are considered. The thermophoresis phenomenon and Brownian motion are applied to model nanoparticles (Buongiorno's model). Governing equations are solved numerically using Runge‐Kutta‐Fehlberg 4.5 after the transformation of partial differential equations into ordinary differential equations. In the obtained outcomes of investigating the impacts of different parameters on the change in velocity, concentration, and temperature profiles for two cases of shear‐thinning liquid and shear thickening liquid are reported as diagrams. Also, in the final segment of this essay, the impacts of diverse parameters on the skin friction coefficient and the local Nusselt number are investigated. The novel findings of current research illustrate that the values of local Nusselt number and surface drag force for shear thickening liquid are higher than shear‐thinning liquid. Also, the temperature profile has direct relationships with thermal radiation and magnetic field.  相似文献   

17.
In this article Eyring–Powell peristaltic fluid flow with heat and mass transfer analysis have been investigated. New fluid model have been presented in peristaltic literature. The governing equations for proposed Eyring–Powell fluid model are derived in cylindrical coordinates both in fixed and moving frame of reference. Complex system of equations have been simplified using long wavelength and low Reynolds number approximation. The momentum and heat/mass transfer balance equations are solved analytically and numerically by employing perturbation method and shooting technique. Graphical results have been discussed for pressure rise, frictional forces, temperature and concentration profile. Comparison of perturbation and numerical solutions have been presented through table and figures. Five different waves forms have been considered for analysis. Trapping phenomena have been presented for different wave forms.  相似文献   

18.
In the present article, we have investigated the unsteady mixed convection flow of a rotating second‐grade fluid in a rotating cone with time‐dependent angular velocities. Two cases of heat transfer are presented which are known as (i) prescribed wall temperature (PWT) and (ii) prescribed heat flux (PHF). The governing coupled nonlinear partial differential equations are simplified with the help of transformations and non‐dimensional similar and non‐similar variables, and solved analytically with the help of the homotopy analysis method (HAM). The effects of pertinent parameters on the velocity, temperature, concentration, skin friction coefficients, Nusselt number, and Sherwood number have been examined through graphs. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 43(3): 204–220, 2014; Published online 30 August 2013 in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21072  相似文献   

19.
A novel investigation is carried out to capture the transient effects of a dual phase‐lag (DPL) model for combined heat and mass transfer magnetohydrodynamic (MHD) flow within a porous microchannel in the presence of Dufour effects and homogenous first‐order chemical reaction. The governing equations for the fluid flow problem are solved using the Laplace transform method, which is a powerful technique for solving partial differential equations. Its inversion is done by using the INVLAP subroutine of MATLAB. The numerical values of fluid velocity, fluid temperature, and species concentration are demonstrated graphically and those of skin friction, heat transfer rate, and mass transfer rate are presented through tables. It is for the first time that the actual time gap between the DPL model, the Cattaneo‐Vernotte model, and the classical Fourier?s model has been deciphered and the results unique to the DPL model are presented. We observe a clear difference between the DPL and the other two models at a dimensionless time , which gradually diminishes as time progresses, and all models coincide together at , that is, where a steady state temperature is reached. An important contribution of this study lies in discovering the time‐bound effects of the phase‐lag parameters of the DPL model on fluid temperature, species concentration, and fluid velocity and support them by physical justification. A similar discussion is provided for all other flow parameters. The results conveyed through this study would undoubtedly help researchers to advance the design of mechanical systems in microdevices involving MHD flow in porous media.  相似文献   

20.
This article deals with the variable MHD effects on the peristaltic flow of a non‐Newtonian fluid in the presence of heat and mass transfer. The walls of annulus are maintained at different temperatures. Continuity, momentum concentration, and energy equations are utilized in the mathematical analysis. Two types of solutions, namely, the exact and numerical, are derived. These solutions are compared and discussed. © 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/htj.20314  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号