首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
This paper describes the preparation characteristics of food‐grade soybean oil‐in‐water (O/W) emulsions using a novel straight‐through extrusion filter, named a silicon straight‐through microchannel (MC). Polyglycerol fatty acid ester (PGFE), polyoxyethelene sorbitan monolaurate (Tween 20), and sucrose fatty acid ester were tested as emulsifiers. Optical observations of the emulsification process exhibited that monodisperse oil droplets were stably formed from an oblong straight‐through MC for PGFE and Tween 20. The effect of the emulsifier on the straight‐through MC emulsification behavior is discussed. The selected PGFE‐ and Tween 20‐containing systems enabled us to prepare monodisperse O/W emulsions with droplet diameters of 38—39 μm and coefficients of variation below 3% using an oblong straight‐through MC with a 16 μm‐equivalent channel diameter.  相似文献   

2.
A novel microchannel (MC) emulsification technique for producing super‐monodisperse microspheres (MS) was recently proposed. In this study, we investigated the formation of monodisperse oil‐in‐water (O/W)‐MS using lecithin and lysophosphatidylcholine (LPC) as surfactant by applying the MC emulsification technique. When we used lecithin to produce O/W‐MS, we observed coalescence of the formed MS and the continuous outflow of the oil phase through the MC. This was probably due to the insufficient interfacial activity of lecithin and the subsequent wetting of the MC surface by the oil phase during the emulsification process. The monodisperse O/W‐MS could not be produced when lecithin was used as the only surfactant. However, we successfully produced monodisperse O/W‐MS by using hydrophilic LPC dissolved in the water phase. Also, a more stable emulsification process producing monodisperse O/W‐MS was found using lecithin in the oil phase and LPC in the water phase. The monodisperse O/W‐MS production was improved by a special surface oxidation treatment of the MC plate.  相似文献   

3.
Oil‐in‐water (O/W) emulsification is a lubricating pipeline method based on the reduction of the energy frictional loss produced during viscous flow. The flow behavior of heavy O/W emulsions formulated with nonionic surfactants is described. The effects of pH and salinity of the aqueous phase on droplet diameter, stability, and apparent viscosity of O/W emulsions were evaluated. The low‐shear Couette flow of O/W emulsions displayed intense shear‐thinning and thixotropic behavior. Thixotropy was associated to the droplet deformation energy caused by shear rate changes. The droplet deformation and alignment led to the apparent viscosity reduction compared to the fluid at rest. Thixotropic behavior is supposed to balance between the breakdown and recovery of droplet ordered structures. Emulsion formulation parameters were influenced by the aqueous phase pH, enabling to manage the emulsion properties. The droplet mean diameter of < 18 µm resulted in very stable emulsions.  相似文献   

4.
This work was initiated to prepare an oil‐in‐water (O/W) emulsion containing β‐carotene by microfluidization. The β‐carotene was dissolved in triolein and microfluidized with an aqueous phase containing sodium caseinate (SC) as the emulsifier. Microfluization at 140 MPa resulted in O/W emulsions with a mean droplet diameter of ca. 120 nm, which was further confirmed by transmission electron microscopy analysis. The influences of SC concentration and microfluidization parameters on the droplet size of the emulsions were studied. The results showed that the mean droplet diameter decreased significantly (p <0.05) from 310 to 93 nm with the increase in SC concentration from 0.1 to 2 wt‐%. However, a further increase in SC concentration did not much change the droplet diameter, although the polydispersity of the emulsions was slightly improved. The droplet diameter of the emulsions was found to decrease from 200 to 120 nm with increasing microfluidization pressure, with narrower droplet size distribution. The storage study showed that the emulsions were physically stable for about 2 weeks at 4 °C in the dark. The results provide a better understanding of the performance of SC in stabilizing the O/W emulsions.  相似文献   

5.
The objective of this study was to investigate the effect of oil phase concentration, at different emulsification conditions concerning homogenization time and emulsifier content, on droplet size distribution and stability of corn oil‐in‐water emulsions. Emulsions were prepared with 3, 5, 10, and 20% w/w triethanolamine oleate (calculated on oil amount), 0.53% w/w carboxymethylcellulose (calculated on water amount), and 5, 10, 20, 30, or 40% w/w oil, and homogenized 5, 10, 20, and 60 min. It was found that increase in oil phase concentration led to decrease in specific surface area and increase in polydispersity of emulsion at lower emulsifier concentration and less intense homogenization. At emulsifier concentrations ≤10% and homogenization time ranges of 20–60 min the non‐monotonous variation in droplet size parameters with oil concentration was observed, as a result of the interaction between triethanolamine oleate and carboxymethylcellulose, which were confirmed by viscosity measurements. However, at emulsifier concentration of 20% an increase in specific surface area and decrease in polydispersity with the increase in oil concentration occurred due to an increase in equilibrium concentration of emulsifier in the continuous phase. Further, influence of oil concentration on emulsion creaming stability was found to be independent on emulsifier concentration and homogenization time. Therefore, a decrease in creaming with increase in oil concentration was observed in all the examined triethanolamine oleate (TEAO) concentration and homogenization time ranges. Practical applications: Emulsions are colloidal systems which can be encountered in different industrial sectors, such as food, pharmaceutical, cosmetics, oil industry, etc. Determination of the droplet size of emulsion is probably the most important way of their characterization, since it influences the properties of emulsion such as rheology, texture, shelf life stability, appearance, taste, etc. The size of the droplets depends on a wide range of parameters. One of them is certainly the concentration of the oil phase. However, since the impact of one parameter is often influenced with the intensity of the other variable involved in the emulsion generation, the aim of the present work was to examine the effect of corn oil concentration on droplet size parameters and stability of oil‐in‐water emulsions at different emulsification conditions. Therefore a step toward creation of emulsions with desired final properties was made.  相似文献   

6.
We developed a novel method for preparing lipid vesicles with high entrapment efficiency and controlled size using water‐in‐oil‐in‐water (W/O/W) multiple emulsions as vesicle templates. Preparation consists of three steps. First, a water‐in‐oil (W/O) emulsion containing to‐be‐entrapped hydrophilic molecules in the water phase and vesicle‐forming lipids in the oil phase was formulated by sonication. Second, this W/O emulsion was introduced into a microchannel emulsification device to prepare a W/O/W multiple emulsion. In this step, sodium caseinate was used as the external emulsifier. Finally, organic solvent in the oil phase was removed by simple evaporation under ambient conditions to afford lipid vesicles. The diameter of the prepared vesicles reflected the water droplet size of the primary W/O emulsions, indicating that vesicle size could be controlled by the primary W/O emulsification process. Furthermore, high entrapment yields for hydrophilic molecules (exceeding 80 % for calcein) were obtained. The resulting vesicles had a multilamellar vesicular structure, as confirmed by transmission electron microscopy.  相似文献   

7.
Beside factors like nature of the emulsifier as well as rheology of the interface and continuous phase, the droplet size distribution of an emulsion governs emulsion properties such as long‐term stability over months or years, texture, and optical appearance. Consequently, emulsions with droplets in nano‐scale are of interest when well‐defined emulsion properties are needed. The formation of emulsions consisting of water, corn oil, and nonionic surfactants using disc systems and high‐pressure homogenizers was studied. The emulsion droplet size distributions were obtained by means of a laser diffraction method. The influence of parameters affecting the emulsion formation, such as emulsification time, viscosity for the disc system, pressure, and homogenizing steps for high‐pressure homogenization, was investigated. Data to determine the effect of the surfactant type and concentration were collected for both systems. The emulsification process using a disc system was evaluated in order to highlight its advantages and limits in comparison to high‐pressure homogenization.  相似文献   

8.
Water-in-soybean oil-in-water (W/O/W) emulsions with an internal water phase content of 10–30% (vol/vol) were prepared by a two-step emulsification method using microfluidization and straight-through microchannel (MC) emulsification. A straight-through MC is a silicon array of micrometer-sized through-holes running through the plate. Microfluidization produced water-in-oil (W/O) emulsions with submicron water droplets of 0.15–0.26 μm in average diameter (d av,w/o) and 42–53% in CV (CVw/o) using tetraglycerin monolaurate condensed ricinoleic acid esters (TGCR) and polyglycerin polycondensed ricinoleic acid esters (PGPR) as surfactants dissolved in the oil phase. The d av,w/o and viscosity of the W/O emulsions increased with an increase in internal water phase content. Straight-through MC emulsification was performed using the W/O emulsions as the to-be-dispersed phase and polyoxyethylene (20) sorbitan monooleate (Tween® 80) as a surfactant dissolved in the external water phase. Monodisperse W/O/W emulsions with d av,w/o/w of 39.0–41.0 μm and CVw/o/w below 5% were successfully formed from a straight-through MC with an oblong section (42.8×13.3 μm), using the TGCR-containing systems. The d av,w/o/w of the monodisperse W/O/W emulsions decreased as the internal water phase content increased because of the increase in viscosity of the to-be-dispersed phase. Little leakage of the internal water droplets and no droplet coalescence or droplet break-down were observed during straight-through MC emulsification.  相似文献   

9.
The photosensitizing activity of curcumin was tested in corn oil and oil‐in‐water (O/W) emulsion systems under visible light irradiation. In addition, the antioxidative/prooxidative properties of curcumin were evaluated in corn oil at 100 °C and in O/W emulsion at room temperature under riboflavin photosensitization or at 60 °C in the dark. Curcumin acted as a photosensitizer in corn oil and O/W emulsions . The oxidative stability of corn oil samples containing curcumin (0–5.0 mmol/kg oil) were not significantly different (p > 0.05) at 100 °C, implying curcumin did not act as an antioxidant nor a prooxidant in corn oil. However, curcumin inhibited lipid oxidation in O/W emulsions under riboflavin photosensitization at room temperature and 60 °C in the dark. The photosensitization and antioxidant abilities of curcumin were greatly influenced by matrix types and presence of riboflavin. Therefore, antioxidative or prooxidative characteristics of curcumin should be evaluated considering matrix type including bulk oil or O/W emulsions and presence of visible light irradiation.  相似文献   

10.
This work shows the formation of a high internal phase ratio oil‐in‐water (O/W) emulsion using a new type of a two‐rod batch mixer. The mixture components have sharply different viscosities [1/3400 for water‐in‐oil (W/O)], similar densities (1/0.974 for W/O), and an O/W ratio of 91% (wt/wt). The simple design of this mixer leads to a low‐energy process (106 < energy density [J m?3] < 107), characterized by low rotational speed and laminar flow. The droplet size distribution during the emulsification was investigated according to different physical and formulation parameters such as stirring time (few minutes < t < 1 h), rotational speed (60 < Ω < 120 rpm), surfactant type (Triton X‐405 and X‐100), concentration (from 1 to 15.9 wt % in water), and salt addition (30 g/L). We show that all studied parameters allow a precise control of the droplet size distribution and the rheology. The resulting emulsions are unimodal and the mean droplet diameter is between 30 μm and 8 μm. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

11.
The effect of hydrophobic modification and regeneration of Shirasu porous glass (SPG) membranes was systematically investigated on the monodispersity of emulsions. The results showed that the hydrophobic modification and regeneration of SPG membranes had little influence on the monodispersity of emulsions, no matter how many modification and regeneration runs were operated. The emulsification runs affected the emulsification performance to a certain extent when hydrophobically‐modified SPG membranes were used for preparing water‐in‐oil (W/O) emulsions repeatedly. However, they almost did not affect the emulsification performance when regenerated hydrophilic SPG membranes were used for preparing oil‐in‐water (O/W) emulsions. The SPG membranes could be used repeatedly after hydrophobic modification or regeneration with almost the same emulsification performance as fresh or freshly‐modified ones. The results provided some valuable guidance for the repetitive use of SPG membranes to prepare monodisperse O/W and W/O emulsions.  相似文献   

12.
不同乳化方法对30%毒死蜱·噻嗪酮水乳剂稳定性的影响   总被引:4,自引:0,他引:4  
[目的]为研究不同乳化方法对农药水乳剂物理稳定性的影响,通过稳定性分析仪扫描和粒径测试研究了4种乳化方法制备30%毒死蜱·噻嗪酮水乳剂的稳定性.[结果]溶剂用量12%时,乳化剂加入油相时水乳剂粒径较小;扫描后1″和3″轻微沉降、2″和4″沉降明显,稳定性指数表明1″最稳定.溶剂用量27%时,1″粒径最小;扫描后1″变化不显著、2″沉降明显,1″径变化较小且最稳定.样品存放后外观与短期扫描结果一致.[结论]制备工艺对水乳剂稳定性影响显著,当溶剂用量27%时,采取将乳化剂加入油相中混匀后再逐渐加人水相中剪切为制备该制剂的最佳工艺.  相似文献   

13.
This paper presents an indirect way to classify the flow during emulsification with orifices and deals with the influence of the flow type on droplet size distribution of the resulting w/o emulsions. Based on the different areas in the slope of the discharge coefficient it was possible to identify different flow conditions. W/O emulsions of two material systems were prepared in the different flow conditions and the droplet size distributions of these emulsions were measured. It was observed that the resulting droplet size distributions of the emulsions strongly depend on the present flow pattern.  相似文献   

14.
The objective of this research was to study the effect of adding different concentrations of chia mucilage (0%, 0.30%, or 0.80%, wt/wt) and sodium caseinate (NaCas) as emulsifying agents (0.1%, 0.5%, 2.0%, or 5.0%, wt/wt) on the stability of oil‐in‐water (O/W) emulsions (10:90, wt/wt) as a function of storage time, at room temperature. The emulsions were characterized by determining the evolution of backscattering profiles, the particle‐size distribution, and microscopic observations. The most stable emulsions over the storage period were those with 0.80% of the chia mucilage concentration. These emulsions also presented a bimodal particle‐size distribution, while the emulsions without chia mucilage exhibited a monomodal distribution. The De Brouker mean diameter (D) [4,3] of all the emulsions decreased with increasing NaCas concentrations and they increased with storage time, mainly for the emulsions with the lowest chia mucilage and the emulsifying agent concentrations. The optical micrographs showed a high destabilization in the emulsions with low concentrations of chia mucilage and NaCas. The results suggest that the addition of chia mucilage to O/W emulsions confers more stability to the emulsions, as a function of increase in the mucilage concentration. The addition of NaCas also showed a greater stability with increasing concentration for both emulsions (with and without chia mucilage).  相似文献   

15.
Recent research has shown that the oxidative stability of oil‐in‐water emulsions is affected by the type of surfactant used as emulsifier. The aim of this study was to evaluate the effect of real food emulsifiers as well as metal chelation by EDTA and pH on the oxidative stability of a 10% n‐3‐enriched oil‐in‐water emulsion. The selected food emulsifiers were Tween 80, Citrem, sodium caseinate and lecithin. Lipid oxidation was evaluated by determination of peroxide values and secondary volatile oxidation products. Moreover, the zeta potential and the droplet sizes were determined. Tween resulted in the least oxidatively stable emulsions, followed by Citrem. When iron was present, caseinate‐stabilized emulsions oxidized slower than lecithin emulsions at pH 3, whereas the opposite was the case at pH 7. Oxidation generally progressed faster at pH 3 than at pH 7, irrespective of the addition of iron. EDTA generally reduced oxidation, as evaluated by volatiles formation in all emulsions, irrespective of pH and emulsifier type, except in the lecithin and caseinate emulsions where a pro‐oxidative effect was observed for some volatiles. The different effects of the emulsifier types could be related to their ability to chelate iron, scavenge free radicals, interfere with interactions between the lipid hydroperoxides and iron as well as to form a physical barrier around the oil droplets.  相似文献   

16.
Formation of a low‐fat oil‐in‐water (O/W) nanoemulsion enriched with vitamin E using the nonionic surfactant Tween 40 is studied by means of a high‐pressure homogenizer. The effect of different process variables of the emulsification process, including pressure, temperature, and concentration of the emulsifying agent, is evaluated. The relation between pressure and the obtained mean droplet diameter is derived and described by an equation which can be taken as a basis of any process design. The droplet size can be decreased by increasing the vitamin E concentration. A higher fat content slightly affects the droplet size distribution and the mean droplet diameter of the nanoemulsion, so it is recommended to use preparations of nanoemulsions with low fat contents enriched with vitamin E for dietary supplement.  相似文献   

17.
In this work, water-in-oil emulsions (W/O) and ethanol-in-oil emulsions (E/O) emulsions were prepared successfully by membrane emulsification. The emulsifiers selected were PGPR and MO-750 for the W/O and E/O emulsions, respectively. For W/O emulsions prepared with an oil pre-filled membrane, the dispersed flux was lower and the droplet size sharper than that obtained with a water pre-filled membrane. On the contrary, for E/O emulsions prepared with the membrane pre-filled with oil, the dispersed phase (ethanol) rapidly pushed out the oil from the membrane pores. Therefore, the pre-treatment of the membrane had almost no effect on the dispersed phase flux and on the droplet size. The droplet size distribution of the E/O emulsion was close to that obtained with a classical homogenizer. The dispersed phase fluxes were high and no fouling was observed for our experimental conditions (1.6 l emulsion, 10 wt% ethanol). These results confirm that membrane emulsification could be an interesting alternative for the preparation of E/O emulsions for the purpose of biodiesel fuels, considering the scale-up ability of membranes and their potentiality for industrial processes.  相似文献   

18.
This work describes the formulation and evaluation of concentrated, heavy oil-in-water emulsions stabilized by mixtures of ethoxylated surfactants and normal alcohols. The rheology, stability and droplet size of these emulsions were investigated as functions of the emulsification process parameters. The parameters investigated for this study include emulsifier agent composition, presence of additives, pH and salinity of the continuous aqueous phase, emulsification temperature, oil content and emulsion aging. The produced emulsions had viscosities ranging from 30 to 150 mPa s and represent a 30-fold reduction of the crude oil viscosity. Sauter mean diameters of the droplets ranged from 10 to 50 μm. The emulsions were produced by mixing the oil with an aqueous solution containing medium normal-chain alcohols and small quantities of a mixture of ethoxylated nonylphenol and ethoxylated amine surfactants. The presence of these alcohols led to a sharp decrease in the droplet size of the emulsion. This size decrease had a direct impact on the emulsions’ stability and apparent viscosity. The rheological parameters of the aged emulsions were also essentially constant over a 42-day period.  相似文献   

19.
We prepared stable oil-in-water emulsions of argan oil with two different types of mixtures of nonionic emulsifiers. Three different types of oil (Israeli argan oil, Moroccan argan oil, and soybean oil) were emulsified with mixtures of Span 80 and Tween 80. The optimum HLB value for argon oil was 11.0 (±1.0). The argan oil-in-water emulsions were stable for more than 5 mon at 25°C. Synergistic effects were found in enhancing stability of emulsions prepared with sucrose monostearate. The origin of the oil and the internal content of natural emulsifiers, such as monoglycerides and phospholipids, have a profound influence on its interfacial properties and on the stability of the argan oil-in-water emulsions.  相似文献   

20.
The accurate prediction of the viscosity of emulsions is highly important for oil well exploitation. Commonly used models for predicting the viscosity of water‐in‐oil (W/O) emulsions composed by two or three factors cannot always fit well the viscosity of W/O emulsions, especially in the case of non‐Newtonian W/O emulsions. An innovative and comprehensive method for predicting the viscosity of such emulsions was developed based on the Lederer, Arrhenius, and Einstein models, using experimental data. Compared with the commonly applied W/O emulsion viscosity models, the proposed method considers more factors, including temperature, volume fraction of water, shear rate, and viscosity of the continuous (oil) and dispersed phase (water). Numerous published data points were collected from the literature to verify the accuracy and reliability of the method. The calculation results prove the high accuracy of the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号