共查询到20条相似文献,搜索用时 15 毫秒
1.
We present our results on nonlinear optical (NLO) and optical limiting properties of Tetra tert-butyl phthalocyanine and Zinc tetra tert-butyl phthalocyanine studied at 633 nm using a continuous wave laser. We have evaluated the sign and magnitude of the third-order nonlinearity from the closed aperture Z-scan data while the nonlinear absorption properties were assessed using the open aperture data. We have observed low power optical limiting, with low limiting thresholds, based on nonlinear refraction in both the samples. We also present results on the NLO properties of the same dyes doped in Polymethylmethacrylate (PMMA). These studies indicate that both the phthalocyanines are potential candidates for low power optical limiting applications. 相似文献
2.
M.E. Nicho S. García-Carvajal P.A. Márquez-Aguilar M. Güizado-Rodríguez J. Escalante-García G. Medrano-Baca 《Materials Chemistry and Physics》2011
Polythiophene derivatives with azo chromophore were synthesized via copolymerization of 3-octylthiophene (3OT) and 2-[N-ethyl-N-[4-[(4-nitrophenyl)azo]phenyl]amino]ethyl 3-thienylacetate (3-DRT). This copolymer has interesting optoelectronic properties and a variety of applications such as electrochromic and electronic devices. The polymerization process of 3OT and the functionalized thiophene was carried out via FeCl3 oxidative polymerization. Thin films of poly(3OT-co-3-DRT) copolymer were prepared by spin-coating technique from toluene. FTIR and 1H NMR spectroscopy revealed the presence of chromophore groups in the copolymer chain. Molecular weight and polydispersity of the polymers were measured by size exclusion chromatography. Changes in the surface topography of copolymers were analyzed by atomic force microscopy; the results showed that the copolymers presented some protuberances of variable size unlike the homogeneous granular morphology of P3OT. It is believed that these changes appeared by the incorporation of 3-DRT in the polymer. P3ATs are electrochromic materials that show color change upon oxidation-reduction process. We report that electrochemical characterization of poly(3OT-co-3-DRT) copolymer films synthesized chemically on indium-tin oxide (ITO) glass substrates showed an additional color to the P3OT homopolymer. Optical absorption properties of the polymer films were analyzed in the undoped and doped states and as a function of 3-DRT concentration in the copolymer. The nonlinear optical properties of the copolymers in the undoped and doped states were analyzed by Z-scan technique. The copolymers showed a change of non-linearity sign when the film was doped and results showed that the copolymers have a positive (self-focusing) and negative (self-defocusing) nonlinear optical properties which make them interesting for application as optoelectronic devices. We determined that the nonlinearity of the polymer films was a Kerr type. 相似文献
3.
Aluminum-doped zinc oxide (ZnO:Al) thin films (t = 68–138 nm) were prepared by thermal oxidation in air flow, at 720 K, of the multilayered metallic Zn/Al thin stacks deposited in vacuum onto glass substrates by physical vapor deposition. The effect of Al content (3.7–8.2 at.%) on the structural (crystallinity, texture, stress, surface morphology) and optical (transmittance, absorbance, energy band gap) characteristics of doped ZnO thin films was investigated. The X-ray diffraction spectra revealed that the Al-doped ZnO films have a hexagonal (wurtzite) structure with preferential orientation with c-axis perpendicular to the substrate surface. A tensile residual stress increasing with Al content was observed. The films showed a high transmittance (about 90%) in the visible and NIR regions. The optical band gap value was found to decrease with Al content from 3.22 eV to 3.18 eV. The results are discussed in correlation with structural characteristics and Al content in the films. 相似文献
4.
In this study, preparation of Nb-doped (0-20 mol% Nb) TiO2 dip-coated thin films on glazed porcelain substrates via sol-gel process has been investigated. The effects of Nb on the structural, optical, and photo-catalytic properties of applied thin films have been studied by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. Surface topography and surface chemical state of thin films was examined by atomic force microscope and X-ray photoelectron spectroscopy. XRD and Raman study showed that the Nb doping inhibited the grain growth. The photo-catalytic activity of the film was tested on degradation of methylene blue. Best photo-catalytic activity of Nb-doped TiO2 thin films were measured in the TiO2-1 mol% Nb sample. The average optical transmittance of about 47% in the visible range and the band gap of films became wider with increasing Nb doping concentration. The Nb5+ dopant presented substitutional Ti4+ into TiO2 lattice. 相似文献
5.
Stefaan Vandendriessche Pieter Willot Ventsislav K. Valev Guy Koeckelberghs Thierry Verbiest 《Materials Chemistry and Physics》2014
Recently, much research has been performed on developing low-bandgap polymers for e.g. harvesting solar energy. In the quest to improve these properties, little attention has been paid to their nonlinear optical properties, despite their interesting linear optical spectra and structural similarities to certain nonlinear optically active compounds. We characterized the optical second harmonic generation of corona poled films of poly(cyclopenta[2,1-b;3,4-b′] dithiophen-4-ylidenedioctylmalonate). The unexpectedly large nonlinear optical susceptibilities and the thermal and temporal stability of the material compare favorably to other novel nonlinear optical materials despite the lack of a donor-acceptor dye. Additionally, the polymer displays a very low absorption in the relevant wavelength region. These results demonstrate the promise of these materials for nonlinear optical devices. 相似文献
6.
Absorption and photoreflectance spectroscopy of zinc phthalocyanine (ZnPc) thin films grown by thermal evaporation 总被引:1,自引:0,他引:1
Optical properties of the as-deposited and annealed ZnPc layers have been investigated using absorption, reflectance and modulated photoreflectance methods. The absorption coefficient of ZnPc layers was directly determined from the transmission and reflection spectra. The absorption spectra were analyzed in terms of the mixed Lorentz–Lorenz model. We found that annealing thin layers at 580 K caused a structural transformation, which results in the decrease of the absorption coefficient and the shifting of all peak position to lower energies except for the peak of the N-band. Photoreflectance spectroscopy confirmed that there exist three transitions in the Q-band region of the studied material. Complex refractive index and dielectric constants of the ZnPc layer were directly found from the spectral data. 相似文献
7.
Sezen Tekin H. Gul Yaglioglu Ayhan Elmali Ulaş Kürüm Hülya Yanık Duygu Aydın Tekdaş Mahmut Durmuş Vefa Ahsen 《Materials Chemistry and Physics》2013
The nonlinear optical properties (NLO) of Pcs can be modified by substituting different metal atoms into the ring or altering peripheral and axial functionalities. In this study, nonlinear optical absorption properties of tetra-substituted gallium and indium phthalocyanine complexes both in solution and polymeric film have been investigated by open aperture Z-scan measurements with nanosecond pulses at 532 nm. All investigated compounds exhibited reverse saturable absorption for both solution and film experiments. The investigated compounds in the solution showed better nonlinear optical absorption properties than polymeric films. The observed nonlinear optical absorption differences depending on the aggregation are discussed using the ultrafast dynamics and decay processes of excited states found from femtosecond pump-probe spectroscopy with white light continuum experiments. 相似文献
8.
R. Vinodkumar K.J. Lethy P.R. Arunkumar Renju R. Krishnan N. Venugopalan Pillai V.P. Mahadevan Pillai Reji Philip 《Materials Chemistry and Physics》2010
CdO doped (doping concentration 0, 1, 3 and 16 wt%) ZnO nanostructured thin films are grown on quartz substrate by pulsed laser deposition and the films are annealed at temperature 500 °C. The structural, morphological and optical properties of the annealed films are systematically studied using grazing incidence X-ray diffraction (GIXRD), energy dispersive X-ray analysis (EDX), scanning electron microscopy (SEM), atomic force microscopy (AFM), Micro-Raman spectra, UV–vis spectroscopy, photoluminescence spectra and open aperture z-scan. 1 wt% CdO doped ZnO films are annealed at different temperatures viz., 300, 400, 500, 600, 700 and 800 °C and the structural and optical properties of these films are also investigated. The XRD patterns suggest a hexagonal wurtzite structure for the films. The crystallite size, lattice constants, stress and lattice strain in the films are calculated. The presence of high-frequency E2 mode and the longitudinal optical A1 (LO) modes in the Raman spectra confirms the hexagonal wurtzite structure for the films. The presence of CdO in the doped films is confirmed from the EDX spectrum. SEM and AFM micrographs show that the films are uniform and the crystallites are in the nano-dimension. AFM picture suggests a porous network structure for 3% CdO doped film. The porosity and refractive indices of the films are calculated from the transmittance and reflectance spectra. Optical band gap energy is found to decrease in the CdO doped films as the CdO doping concentration increases. The PL spectra show emissions corresponding to the near band edge (NBE) ultra violet emission and deep level emission in the visible region. The 16CdZnO film shows an intense deep green PL emission. Non-linear optical measurements using the z-scan technique indicate that the saturable absorption (SA) behavior exhibited by undoped ZnO under green light excitation (532 nm) can be changed to reverse saturable absorption (RSA) with CdO doping. From numerical simulations the saturation intensity (Is) and the effective two-photon absorption coefficient (β) are calculated for the undoped and CdO doped ZnO films. 相似文献
9.
Amorphous Ge20Se80−xCdx thin films with different compositions (x = 0, 2.5, 5, 7.5 and 10 at.%) were deposited onto glass substrates by thermal evaporation. The reflection spectra, R(λ), of the films at normal incidence were obtained in the spectral region from 400 to 2500 nm. Based on the use of the maxima and minima of the interference fringes, a straightforward analysis proposed by Minkov has been applied to derive the optical constants and the film thickness for the Ge20Se80−xCdx thin films. The dispersion of the refractive index is discussed in terms of the single-oscillator Wemple and DiDomenico model. Tauc relation for the allowed non-direct transition describes the optical transition in the studied films. With increasing cadmium content the refractive index increases while the optical band gap decreases. The optical band gap decreases from 2 to 1.5 eV with increasing cadmium content from 0 to 10 at.%. The chemical-bond approach has been applied successfully to obtain the excess of Se–Se homopolar bonds and the cohesive energy of the Ge20Se80−xCdx system. 相似文献
10.
M.E. Sánchez-Vergara M. Rivera J.C. Alonso-Huitrón A. Rodriguez J.R. Álvarez-Bada 《Materials Chemistry and Physics》2013
In this work, the synthesis and characterization of molecular materials formed from K2[Cu(C2O4)2], 1,8-dihydroxyanthraquinone and its potassium salt are reported. These complexes have been used to prepare thin films by vacuum thermal evaporation. The synthesized materials were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), fast atomic bombardment (FAB+) mass and ultraviolet–visible (UV–vis) spectroscopy. Electrical transport properties were studied by dc conductivity measurements. The electrical activation energies of the complexes, which were in the range of 0.36–0.65 eV, were calculated from their Arrhenius plots. Optical absorption studies in the 100–1100 nm wavelength range at room temperature showed thin films' optical band gaps in the 2.3–3.9 eV range for direct transitions. On the other hand, strong visible photoluminescence (PL) at room temperature was noticed from the thermally-evaporated thin solid films. The PL of all investigated samples were observed with the naked eye in a bright background. The PL and absorption spectra of the investigated compounds are strongly influenced by the molecular structure and nature of the organic ligand. 相似文献
11.
Polyaniline thin films prepared by RF plasma polymerisation were irradiated with 92 MeV Si ions for various fluences of 1×1011, 1×1012 and 1×1013 ions/cm2. FTIR and UV-vis-NIR measurements were carried out on the pristine and Si ion irradiated polyaniline thin films for structural evaluation and optical band gap determination. The effect of swift heavy ions on the structural and optical properties of plasma-polymerised aniline thin film is investigated. Their properties are compared with that of the pristine sample. The FTIR spectrum indicates that the structure of the irradiated sample is altered. The optical studies show that the band gap of irradiated thin film has been considerably modified. This has been attributed to the rearrangement in the ring structure and the formation of CC terminals. This results in extended conjugated structure causing reduction in optical band gap. 相似文献
12.
TeO2 thin films were deposited on quartz substrates by rf reactive sputtering technique from a Te metal target. The obtained samples were annealed in an argon atmosphere at 450 °C for different annealing times up to 90 min. X-ray diffraction studies revealed that the as-grown samples were amorphous and there was no appreciable change in structure for a short annealing time. Thin films became polycrystalline with the tetragonal (α-phase) structure of tellurium dioxide crystal with the increase of the thermal annealing time. The refractive index and optical energy gap of the films were calculated by modelling transmittance spectra. The optical energy gap decreased continuously from 3.83 eV to 3.71 eV with increasing thermal annealing time. 相似文献
13.
Undoped and Al-doped ZnO thin films were deposited on glass substrates by the spray pyrolysis method. The structural, morphological and optical properties of these films were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), UV–Vis spectroscopy, photoluminescence (PL) and photoconductivity (PC) measurements, respectively. XRD analyses confirm that the films are polycrystalline zinc oxide with the hexagonal wurtzite structure, and the crystallite size has been found to be in the range 20–40 nm. SEM and AFM analyses reveal that the films have continuous surface without visible holes or faulty zones, and the surface roughness decreases on Al doping. The Al-doped films have been found to be highly transparent (>85%) and show normal dispersion behavior in the wavelength range 450–700 nm. The doped films show only ultraviolet emission and are found to be highly photosensitive. Among all the films examined, at 300 °C the 1.0 at% Al-doped film shows the selective high response (98.2%) to 100 ppm acetone concentration over to methanol, ethanol, propan-2-ol, formaldehyde and hydrogen. 相似文献
14.
Gex Sb40−x Se60 (x = 0, 2.42 and 23.41 at.%) thin chalcogenide films were deposited on glass and quartz substrates by the conventional thermal evaporation technique at 300 K. The chemical composition of the bulk material and as-deposited films were determined by energy dispersive analysis X-ray spectrometry (EDAX). X-ray diffraction pattern (XRD) of Gex Sb40−x Se60 (x = 0, 2.42 and 23.41 at.%) thin films indicates that they have amorphous structure. The optical transmission and reflection spectra were measured in the range of 500 to 2500 nm. The optical absorption coefficient spectra were studied for deposited samples. It is observed that the optical absorption edge shift to higher energy range, as the germanium content, x, increases in the film. The type of electronic transition, responsible for the optical properties, is indirect allowed transition. It is found that the optical band gap increases as the Ge content increases.The average coordination number (Nc) in Gex Sb40−x Se60 films increases, but the number of chalcogenide atoms remains constant. The number of Ge - Se bonds and the average bond energy of the system increase with the increase of the average coordination number. The optical band gap, Eg, increases with the increase of the average coordination number, (Nc). Also the energy gap, E04, is discussed in terms of its relation to the chemical composition. The dispersion of the refractive index (n) is discussed in terms of the Single Oscillator Model (SOM) (Wimple - Didomenico model). The single oscillator energy (E0), the dispersion energy (Ed) and the optical dielectric constant (?∞) are also estimated. 相似文献
15.
J. Pantoja Enriquez N.R. Mathews G. Pérez Hernández Xavier Mathew 《Materials Chemistry and Physics》2013
CdTe thin films of different thicknesses were deposited by electrodeposition on stainless steel substrates (SS). The dependence of structural and optical properties on film thickness was evaluated for thicknesses in the range 0.17–1.5 μm. When the film is very thin the crystallites lack preferred orientation, however, thicker films showed preference for (111) plane. The results show that structural parameters such as crystallite size, lattice constant, dislocation density and strain show a noticeable dependence on film thickness, however, the variation is significant only when the film thickness is below 0.8 μm. The films were successfully transferred on to glass substrates for optical studies. Optical parameter such as absorption coefficient (α), band gap (Eg), refractive index (n), extinction coefficient (ke), real (?r) and imaginary (?i) parts of the dielectric constant were studied. The results indicate that all the optical parameters strongly depend on film thickness. 相似文献
16.
The properties of substrates used to deposit thin films are an important parameter in thin film production. Instead of using a commercial substrate, in this work, borate and phosphate glasses have been obtained by classic melt-quenching technique to be used as substrates for CdO films. Also, a microscope glass substrate has been used to compare the coating properties by other glass substrates. All films have been produced by Ultrasonic Spray Pyrolysis technique. The substrate temperature has been selected as 275 ± 5 °C. Thicknesses and some optical parameters such as refractive index and extinction coefficient have been determined by spectroscopic ellipsometry. Absorbance and transmittance spectra have been taken by UV/VIS spectrophotometer. Four-probe method has been used to determine the electrical resistivity values of the films. XRD investigations have shown that type of the substrate dramatically affects the characteristics of CdO films. CdO film deposited on phosphate glass substrate has the best structural quality. Atomic Force Microscope has been used to investigate the surface properties and roughness values of the films. 相似文献
17.
Bifunctional Eu(BMDM)3@polysiloxane nanoparticles were prepared through reprecipitation–encapsulation methods using 1-(4-tert-butylphenyl)-3-(4-methoxyphenyl)-1,3-propanedione (BMDM) ligand and octyltrimethoxysilane (OTS) precursor and embedded into waterborne polyurethane (PU) coatings to fabricate transparent optical composite films. The photostability and thermostability of the nanoparticles in water and their ability to block UV and convert light when embedded in PU films were investigated. In comparison with the control Eu(BMDM)3 nanoparticles, the Eu(BMDM)3@polysiloxane nanoparticles, especially those prepared at a Eu(BMDM)3/OTS mole ratio of 1:2, exhibited far superior stability under storage conditions, UV irradiation, and heating. They also showed excellent UV-shielding and highly efficient light conversion properties because of the protective polysiloxane. 相似文献
18.
In this work we report about the preparation and optical characterization of technologically relevant silver based nanostructures by metal infiltration of monolayered or opal-like templates of polystyrene (PS) latex spheres. Low toxicity electrolytic baths present obvious advantages and facilitate the synthesis, and are therefore, desirable methods for this kind of processes. Silver was reduced from an environmentally friendly solution based on ethylendiaminetetraacetic acid or EDTA using pulse plating electrochemical methods. The morphology of the deposits may be controlled by the pre-treatment process performed before the electrodeposition. Optical reflectance spectroscopy analysis shows that high quality films may be obtained by this method. 相似文献
19.
Hydrogenated nanocrystalline silicon thin films were prepared by RF magnetron sputtering. Different bias fields (no bias-no ground, grounded and negative bias) were applied to the substrate. The effect of the ion bombardment on the structure, chemical and optical property were studied by Raman spectroscopy, X-ray diffraction, Rutherford backscattering (RBS) and optical transmission spectroscopy. The deposition rate and the optical bandgap decrease as the bias voltage increases from 0 to −50 V. The structural characterization indicates that compressive stress is developed in plane and tensile stress is induced in the growth direction. No significant variation on the chemical composition was observed. 相似文献
20.
The optical absorbance of four ternary thin films, i.e. MgSiP2, MgGeP2, MgSiAs2, MgGeAs2 have been theoretically examined over a wide range of wavelength from 300 nm to 800 nm. The combination of first-principle electronic structure calculations and the optical matrix approach for modeling the multilayer assembly have been employed for theoretical studies. The analysis of the calculated absorbance spectra at room temperature with unpolarized light and normal incidence, revealed that MgGeAs2 with a direct energy band gap of 1.6 eV exhibit a considerable high optical absorption, where a thickness of 3.2 μm of this thin film is sufficient to absorb 90% of the incident light and generates a maximum photocurrent of ∼23 mA/cm2. 相似文献