首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dental cobalt–chromium alloys are an important biomaterial used in making artificial dentures. Bacterial adhesion to cobalt–chromium alloys usually results in severe complications such as periodontal infection, secondary caries, and denture stomatitis, which have severe adverse impacts on human health. Therefore, an effective method is needed to reduce the bacterial adhesion to dental cobalt–chromium alloys. The aim of this study was to investigate the effects of ta-C films deposited on a dental cobalt–chromium alloy on the adhesion of Streptococcus mutans (ATCC175), Actinomyces viscosus (ATCC19246) and Candida albicans (ATCC76615). A filtered cathodic vacuum arc (FCVA) technique was used to coat the cobalt–chromium alloy with a ta-C film. Atomic force microscopy (AFM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to analyze the surface characteristics of the coating. Surface roughness was detected. Surface free energy and its components were calculated by measuring the contact angle. The results showed that the maximum sp3 fraction was achieved at 200 V substrate bias voltage. Compared with uncoated specimens, the ta-C film coated specimens had a lower surface roughness, a higher surface energy and a higher hydrophilicity. Most importantly, the adhesion of the three tested bacterial strains to the ta-C film coated cobalt–chromium alloy was significantly decreased. These results showed that ta-C film surface treatment could significantly reduce the bacterial adhesion to dental cobalt–chromium alloys, suggesting the potential of ta-C film surface treatment in artificial denture applications.  相似文献   

2.
Previous studies have shown that WC–Co material can plastically deform during indentation test, and microcracking is one of the dominant mechanisms for the plastic deformation. Microcracks follow several paths of microstructure: transgranular cracks within WC grains, intergranular cracks along grain boundary and cracks at WC/Co interface. In this study, six commercial grades of WC–Co material were tested using the Hertzian indentation technique at the same indentation load with the same size of an indenter. The microcrack number density of each grade was measured and its correlation with microstructural parameters was analyzed. Materials with high cobalt content, large grain size, large mean free path and low contiguity form more microcracks in the course of plastic deformation. The microcrack number density is also correlated with mechanical properties. High microcrack number density corresponds to low hardness and high toughness. The mechanism of how the microcracking affects the fracture toughness is also discussed.  相似文献   

3.
To machine WC–Co cemented carbides, discontinuous cutting (milling, shaping, etc.) with diamond tools can be an economical alternative to grinding or electrical discharge machining operations for finishing mechanical parts after sintering. However, the machining with cutting depths within the range of sintering allowance (≈0.2 mm) leads to high cutting forces which may influence the quality of the workpiece.  相似文献   

4.
Ti–Ni–Cu/SiO2 two layer diaphragm-type microactuators were fabricated by sputter deposition and micromachining. The influence of heat treatment temperature on the actuation behavior was investigated under quasi-static conditions. The interfacial structure of Ti–Ni–Cu/SiO2 and internal structure of the Ti–Ni–Cu layer were also investigated using transmission electron microscopy. The reaction layer formed between the Ti–Ni–Cu and SiO2 layers, and preferentially grew into the SiO2 side. The reaction layer formed at 1023 K mainly consisted of Ti4(Ni,Cu)2O. The maximum height of the diaphragm decreased with increasing heat treatment temperature. The growth of the reaction layer also affected the microstructure of the Ti–Ni–Cu layer. The density of fine platelets and Ti2Ni precipitates decreased with increasing heat treatment temperature from 873 to 923 K, and they disappeared at 973 K due to the fact that the reaction layer mainly consisted of a Ti-rich phase. The microactuator heat treated at 973 K showed the highest transformation temperature with the lowest transformation temperature hysteresis, which is attractive for high speed actuation.  相似文献   

5.
《金属精饰学会汇刊》2013,91(6):324-329
Abstract

In this study, corrosion properties of nanocrystalline and amorphous Co–P coatings prepared using dc electrodeposition were investigated. The morphology of amorphous coatings was smoother and brighter than nanocrystalline coatings with 'cauliflower' morphology. Tafel polarisation tests of the coatings in 0·1M H2SO4 solution revealed that the amorphous coating had better corrosion resistance than the nanocrystalline one. Corrosion resistance of both coatings decreased after annealing. On the nanocrystalline coating, corrosion attacks were localised around the nodules on the surface while a more uniform type of attack was observed on amorphous coatings. Neither nanocrystalline nor amorphous coatings showed passivation in 0·1M H2SO4 solution, but both of them showed an active–passive behaviour in 10%NaOH solution due to the formation of Co(OH)2 as fine hexagonal shape products which acted as a passive layer. The passive current density of the amorphous coating was higher than that of the nanocrystalline one, but it was decreased markedly by annealing. However, annealing had no significant effect on the passivation behaviour of the nanocrystalline coating.  相似文献   

6.
7.
Microstructure of the nanocrystalline WC–Co cermet bulk was quantitatively described by transmission electron microscopy based precession electron diffraction technology. It is discovered that the fraction of the Σ2 grain boundaries increases with the decrease of WC grain size. The effect of microstructure on mechanical properties depends on Co distribution, Σ2 boundaries fraction and WC grain contiguity.
  相似文献   

8.
Co–P (4.9% P) powders with a chain-like morphology were prepared by a novel chemical reduction method. The Co–P and germanium powders were mixed at various mass ratios to form Co–P composite electrodes. Charge and discharge test and electrochemical impedance spectroscopy (EIS) were carried out to investigate the electrochemical performance, which can be significantly improved by the addition of germanium. For instance, when the mass ratio of Co–P powders to germanium is 5:1, the sample electrode shows a reversible discharge capacity of 350.3 mA·h/g and a high capacity retention rate of 95.9% after 50 cycles. The results of cyclic voltammmetry (CV) show the reaction mechanism of Co/Co(OH)2 within Co–P composite electrodes and EIS indicates that this electrode shows a low charge-transfer resistance, facilitating the oxidation of Co to Co(OH)2.  相似文献   

9.
A pre-activation process on substrate surface has remarkably improved the poor adhesion strength of diamond-like carbon (DLC)–Si coatings on steels which is the largest obstacle in achieving a widespread application of the coatings onto machine components. The activation process consists of preliminary nitriding followed by ion etching under the selected condition. Very fine protrusions formed by the processes provide large adhesion strength to the coatings that were made continuously within the same DC-plasma-assisted chemical vapor deposition (PACVD). No intermediate layers are necessary. The critical load of DLC–Si coatings thus treated reached over 50 N in the scratch tests. The coatings with the critical load over 50 N showed much improved rolling fatigue life. The DLC–Si coating with over 50 N critical load endured a rotationa1 stress of 108 cycles at a contact pressure of 3.4 GPa, whereas the DLC–Si coatings with 10 N spalled at 106 cycles.  相似文献   

10.
Three-dimensional atom probe analysis is employed to characterize the Sc segregation at θ′/α-Al interfaces in Al–2.5 wt.% Cu–0.3 wt.% Sc alloys aged at 473, 523 and 573 K, respectively. The interfacial Sc concentration is quantitatively evaluated and the change in interfacial energy caused by Sc segregation is assessed, which is in turn correlated to yield strength and ductility of the alloys. The strongest interfacial Sc segregation is generated in the 523 K-aged alloy, resulting in an interfacial Sc concentration about 10 times greater than that in the matrix and a reduction of ~25% in interfacial energy. Experimental results show that the interfacial Sc segregation promotes θ′ precipitation and enhances the strengthening response. A scaling relationship between the interfacial energy and precipitation strengthening increment is proposed to account for the most notable strengthening effect observed in the 523 K-aged alloy, which is ~2.5 times that in its Sc-free counterpart and ~1.5 times that in the 473 and 573 K-aged Al–Cu–Sc alloys. The interfacial Sc segregation, however, causes a sharp drop in the ductility when the precipitate radius is larger than ~200 nm in the 523 K-aged alloy, indicative of a transition in fracture mechanisms. The underlying fracture mechanism for the low ductility regime, revealed by in situ transmission electron microscopy tensile testing, is that interfacial decohesion occurs at the θ′ precipitates ahead of crack tip and favorably aids the crack propagation. A micromechanical model is developed to rationalize the precipitate size-dependent transition in fracture mechanisms by taking into account the competition between interfacial voiding and matrix Al rupture that is tailored by interfacial Sc segregation.  相似文献   

11.
Effects of Co nanoparticle additions to Sn–3.8Ag–0.7Cu on the structure of solder/copper interface have been studied after reflow and high temperature ageing (150 °C, up to 1008 h). Results show that the Co nanoparticles substantially suppress the growth of Cu3Sn but enhance Cu6Sn5 growth. Cobalt nanoparticles reduce interdiffusion coefficient in Cu3Sn. It is suggested that the Co nanoparticles undergo surface dissolution during reflow and exert their influence, at least partially, through alloying effect.  相似文献   

12.
Phase separated metallic glasses were prepared in the Gd–Hf–Co–Al system by rapid quenching of the melt. Due to the strong positive enthalpy of mixing between the main constituent elements Gd and Hf (ΔHGd–Hf = +11 kJ/mol) a heterogeneous microstructure is formed consisting of two amorphous phases, which are Gd-enriched and Hf-enriched, respectively. The size of the phase separated regions varies from 0.1 μm to 5 μm, depending on alloy composition and cooling rate. Different types of microstructure, such as an interconnected structure or a droplet structure were obtained as a function of cooling rate. The microstructure of the phase separated metallic glasses is determined not only by their composition, the critical temperature, and the shape of the miscibility gap, but also by the viscosity and diffusivity of the melt.  相似文献   

13.
The as-cast and as-extruded Mg–9Li, Mg–9Li–0.3Ce alloys were respectively prepared through a simple alloying process and hot extrusion. The microstructures of these alloys were investigated by optical microscope (OM), scanning electron microscope (SEM), X-ray diffractometer (XRD) and energy dispersive spectrometer (EDS). The results indicate that Ce addition produces a strong grain refining effect in Mg–9Li alloy. The grain size of the as-extruded alloy reduces abruptly from 88.2 μm to 10.5 μm when the addition of Ce is 0.36%. Mg12Ce is verified and exists inside the grains or at the grain boundaries, thus possibly pins up grain boundaries and restrains the grain growth.  相似文献   

14.
15.
Many processing techniques, such as hot dip aluminizing, bimetal formation, liquid metal corrosion, cementing, welding and diffusion bonding, are basically dependent on interfacial reactions [1-3]. It is therefore important to investigate the formation and growth of intermetallic layers at the interface. There have been several studies carried out to examine chemical compositions and growth kinetics of intermetallic layers in the Al-Fe system [4-9]. Most authors have come to an agreement that…  相似文献   

16.
1 INTRODUCTIONAsacandidateofhightemperaturematerialforstructureapplications ,γ basedtitaniumaluminideal loyshaveattractedconsiderableinterest ,especiallyforthosewithfullylamellarmicrostructureconsistingofγ (L10 structure)andα2 (D0 19structure)lamel lae .Thesealloyscanhaveattractivecombinationsofmechanicalproperties ,suchashighcreepresistance ,fracturetoughnessandspecificstrength[1,2 ] .Howev er,themechanicalpropertiesoffullylamellarmi crostructuresdeterioratewhenthelamellarstructurebe…  相似文献   

17.
Tungsten heavy alloys are aggregates of particles of tungsten bonded with Ni/Fe or Ni/Cu via liquidphase sintering. The sub-micrometer Ta Co powder was added to this aggregate to strengthen the bonding phase. It is found that the main fracture pattern of the alloys is cleavage of tungsten grains and ductile rupture of bond phase,leading to improved tensile strength and elongation. Dopant Ta can act as grain size inhibitor in tungsten heavy alloys.  相似文献   

18.
Liquid–liquid phase separation and its effect on the microstructure has been investigated along the quasi-binary line (Co40Cu60)100−xZrx with x = 2, 4, 6, 9 and additionally for (Co50Cu50)94Zr6 and (Co60Cu40)94Zr6. The elemental distributions and the microstructures were analyzed by scanning electron microscopy and energy dispersive X-ray spectroscopy for samples that were (i) processed by thermal cycling in alumina crucibles at 10, 20 and 30 K/min with simultaneous differential thermal analysis, (ii) rapidly quenched by single-roller melt spinning and (iii) quenched after having been electromagnetically levitated at various temperatures. The metastable miscibility gap of the binary Co–Cu system with phase separation into Co- and Cu-rich liquids transforms into a stable miscibility gap for Zr contents 3 < x < 7.5 with separation into Co/Zr-rich and Cu-rich liquids. In contrast to the binary Co–Cu system where the Cu-rich liquid phase always surrounds the Co-rich phase, the Zr addition modifies the surface tension energies and/or wetting behavior in a peculiar way so that the Co/Zr-rich phase always encloses the Cu-rich liquid phase concerning the ternary Co–Cu–Zr system in that compositional range. The macrosegregation morphologies of the liquid phase separation that built up via Ostwald ripening, gravity-driven convection, collision, coalescence and wetting effects proceed on a very short time scale and even samples that have been prepared by rapid quenching techniques still exhibit phase separated regions in the micrometer regime.  相似文献   

19.
The objective of this study was to investigate the effect of swaging on the microstructure and tensile properties of high density two phase alloys 90W–7Ni–3Fe and 93W–4.9Ni–2.1Fe. Samples were liquid phase sintered under hydrogen and argon at 1480 °C for 30 min and then 15% cold rotary swaged. Measurement of microstructural parameters in the sintered and swaged samples showed that swaging slightly increased tungsten grain size in the longitudinal direction and slightly decreased tungsten grain size in the transverse direction. Swaging increased the contiguity values in both longitudinal and transverse directions. Swaging led to more severe deformations at the edges than at the center of the specimens. Solidus and liquidus temperatures of the nickel-based binder phase in the sintered and swaged samples were determined by differential scanning calorimetry measurements. An increase in tensile strength with a reduction in ductility was observed due to strain hardening by swaging.  相似文献   

20.
Coarse grained WC–10(Co, Ni) cemented carbides with different Ni contents were fabricated by sintering-HIP and cyclic sintering at 1450 °C. The effects of Ni addition and cyclic sintering on the microstructures, magnetic behavior and mechanical properties of coarse grained WC–10(Co, Ni) cemented carbides have been investigated using scanning electron microscope (SEM), magnetic performances tests and mechanical properties tests, respectively. The results showed that the mean grain size of hardmetals increases from 3.8 μm to 5.78 μm, and the shape factor Pwc decreases from 0.72 to 0.54, with the Ni content increases from 0 to 6 wt.%. Moreover, the W solubility reaches the highest value of 10.33 wt.% when the Ni content is 2 wt.%. The hardness and transverse rupture strength of WC–8Co–2Ni are 1105 HV30 and 2778 MPa, respectively. The cyclic sintering is conducive to increase the WC grain size of WC–10(Co, Ni) and improves the transverse rupture strength of WC–10Co without compromising the hardness of alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号