首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrofluoric and hydrochloric acid solutions and a mixture of them were tested as pickling solutions for AZ91 D Mg alloy before application of stannate coatings. Optical microscopy and energy dispersive X-ray spectroscopy (EDX) of the alloy surface after the pickling process showed that the Mg-rich α phase dissolved preferentially rather than the Al-rich β phase in hydrochloric acid solution. On the other hand, in hydrofluoric acid solution, Mg dissolved in a form of pitting corrosion. Pickling pretreatment with a mixture of these acids at an optimal concentration and an optimal pickling time resulted in relatively uniform dissolution of the alloy surface. The potentiodynamic polarization technique was used to investigate the anodic behavior of the uncoated and coated magnesium alloy in borate buffer solution. The morphology of the coatings was observed using a scanning electron microscope (SEM) before and after corrosion tests. The experimental results showed that coating film density and corrosion resistance of stannate-coated samples prepared with pickling pretreatment were improved compared with those of the coated sample without pickling pretreatment.  相似文献   

2.
The effects of solution composition and temperature on the microstructure and corrosion resistance of stannate conversion coatings on AZ61 magnesium alloys were investigated. The conversion coating consisted of a porous layer as under layer intimately contacted with the magnesium plate and a hemispherical particle layer as major overlay formed right on top of the porous layer. During the coalescence of the hemispherical particles to form a complete coating on the magnesium alloy, some sites of discontinuity inevitably left and determined the corrosion resistance of the coating evaluated using a salt spray test. Increasing bath stannate ion concentration and lowering bath pH increased the population density of the hemispherical particles whose size was accordingly reduced. The corrosion resistance of the conversion coating was improved with finer particles, which were preferably formed at less alkaline solution with higher stannate ion contents. Furthermore, the conditions favoring the formation of finer particles also reduced the immersion time necessary for producing the conversion coating with optimal corrosion resistance.  相似文献   

3.
The aim of this work is to study the structure and the corrosion resistance of the plasma electrolytic oxidation ZrO2 ceramic coatings on Mg alloys. The ceramic coatings were prepared on AZ91D Mg alloy in Na5P3O10 and K2ZrF6 solution by pulsed single-polar plasma electrolytic oxidation (PEO). The phase composition, morphology and element distribution in the coating were investigated by X-ray diffractometry, scanning electron microscopy and energy distribution spectroscopy, respectively. The results show that the coating thickness and surface roughness were increased with the increase of the reaction time. The ceramic coatings were of double-layer structure with the loose and porous outer layer and the compact inner layer. And the coating was composed of P, Zr, Mg and K, of which P and Zr were the main elements in the coating. P in the coating existed in the form of amorphous state, while Zr crystallized in the form of t-ZrO2 and a little c-ZrO2 in the coating. Electrochemical impedance spectra (EIS) and the polarizing curve tests of the coatings were measured through CHI604 electrochemical analyzer in 3.5% NaCl solution to evaluate the corrosion resistance. The polarization resistance obtained from the equivalent circuit of the EIS was consistent with the results of the polarizing curves tests.  相似文献   

4.
Lap joints between AZ91D thixomolded Mg alloy and amorphous polyethylene terephthalate (PET) were produced by direct irradiation of high power diode laser beam from either plastic or metal side. Joints with strength higher than that of PET could be successfully produced. Joining mechanism involves the generation of gas bubbles in a narrow region inside PET specimen adjacent to the interface. The pressure induced by expansion of these bubbles secures tight bonding in the micro size between AZ91D and PET specimens. Discrete bubbles morphology associated with metal-side laser-irradiation promoted higher joint strength in comparison with networked wormhole morphology in the case of plastic-side laser-irradiation. The presence of pre-made pits on the AZ91D specimen surface proved to be effective to the improvement in the performance of plastic-side laser-irradiated joints.  相似文献   

5.
AZ91D镁合金表面聚氨酯涂层耐腐蚀性能   总被引:1,自引:0,他引:1  
利用附着力及铅笔硬度测试、浸泡试验、盐雾试验、电化学试验等方法对AZ91D镁合金表面的聚氨酯涂层及环氧聚氨酯涂层形貌和性能进行了研究,并对两种涂层的腐蚀保护效果及机理进行了探讨。结果表明,这两种涂层都能显著提高镁合金的耐腐蚀性能,与基材附着良好且硬度高。与聚氨酯涂层PU相比,环氧聚氨酯涂层ER/PU的耐腐蚀效果更好。  相似文献   

6.
A stannate chemical conversion process followed by an activation procedure was employed as the pre‐treatment process for AZ91D magnesium alloy substrate. Zn was electroplated onto the pre‐treated AZ91D magnesium alloy surface from pyrophosphate bath to improve the corrosion resistance and the solderability. The surface morphologies of conversion coating and zinc coating were examined with scanning electron microscope (SEM). The phase composition of conversion coating was investigated by X‐ray diffraction (XRD). The electrochemical corrosion behavior of the coatings in the corrosive solution was investigated by potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). The experimental results showed that the activated stannate chemical conversion coating provided a suitable interface between zinc coating and the AZ91D magnesium alloy substrate. The corrosion resistance of the AZ91D substrate was improved by the zinc coating.  相似文献   

7.
Corrosion phenomenon of magnesium alloys is one of the limits for using magnesium alloys in automotive and aerospace industries. The aim of this study is the development of Sn-containing protective oxide coating by a simple plasma electrolytic oxidation in KOH/KF/Na3PO4 electrolyte on AZ91D magnesium alloy in galvanostatic mode. The film morphology and composition were analysed by SEM coupled with EDS, XRD and Raman spectroscopy. In the oxide, tin is mainly incorporated as crystallised MgSn(OH)6 compound in the layer. The main properties of Sn-containing oxide coating on AZ91D are both keeping the corrosion rate at open-circuit conditions at an acceptable value, and providing a sufficient passivation plateau to reduce the pitting sensibility. The lather characteristic, revealed by pitting tests, addresses the major drawback of magnesium alloys which often undergo important galvanic coupling in service. Consequently, the addition of low stannate concentration in the electrolyte to form Sn-rich anodic oxide on magnesium alloys represents an interesting way to synthesize protective coatings by PEO in a short time of anodization.  相似文献   

8.
The formation process of stannate conversion coating (CC) on AZ91D alloy was in-situ investigated by electrochemical noise (EN). The wavelet transform, as well as noise resistance (Rn) and spectral noise resistance (Rsn), had been employed to analyze the EN data. It was revealed that there exist two distinguishing stages of stannate CC formation process on AZ91D alloy, including an incubation stage companying with the nucleation and nuclei dissolution process, a periodical growth stage involving hemispherical particles growth and coating dissolution process. Furthermore, the results demonstrated that EN was a powerful tool to investigate rapid electrochemical process, such as CC formation process.  相似文献   

9.
The influence of pulse parameters on zinc-nickel coatings plated on AZ91 magnesium alloy is investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The particles of zinc-nickel alloy plated on AZ91 magnesium alloy become smaller and the surface roughness decreases with the increase of current density and frequency. However, long plating times and a high ratio of ton/toff have decremental effects on the particles and surface roughness. The contents of crystal phases of zinc-nickel alloy coatings are higher under pulse current deposition than under direct current. The frequency, current density, plating time and ratio of ton/toff have different impacts on the thickness and Ni content of zinc-nickel coatings.  相似文献   

10.
AZ91HP magnesium alloy was melted by CO2 laser. Compared with as‐received Mg alloy, the grain of the melted layer was refined significantly and the content of Al was increased. The corrosion resistance of the melted layer was improved because of the grain refinement, the redistribution of β‐Mg17Al12 and the increasing of the Al content. As compared to the non‐overlapping zone, the overlapping zone of the melted layer was liable to be corroded.  相似文献   

11.
Formation mechanism of pulse current anodized film on AZ91D Mg alloy   总被引:1,自引:0,他引:1  
The kinetics of forming process of pulse current anodized film on AZ91D Mg alloy was studied by the voltage-time and thickness-time curves. The surface morphology, structure, elemental constitution and valences of the anodic films were analyzed by SEM, EDS, XPS and XRD respectively. The results show that the film-forming process can be divided into four stages. Formation of a dense layer before sparking is the first stage. Formation of a porous layer accompanied with slight sparking is the second stage. The third stage is characterized by fast growth of the porous layer accompanied with more intensive sparking. The fourth stage starts after the sparking process becomes even more vigorous and the pores become large.  相似文献   

12.
Atmospheric corrosion of field-exposed magnesium alloy AZ91D   总被引:2,自引:0,他引:2  
The magnesium alloy AZ91D was exposed in three different types of atmospheric environment, viz. urban, rural and marine exposure sites. Corrosion rates, corrosion products formed, and the influence of the microstructure on the corrosion behaviour of the alloy were investigated. The corrosion rate of AZ91D exposed in the marine environment was 4.2 μm/year, and in the rural and urban environments 2.2 and 1.8 μm/year, respectively. The main corrosion product found was magnesium carbonate hydromagnesite (Mg5(CO3)4(OH)2·4H2O), which was formed at all three exposure sites. The corrosion attack started in the -phase in larger grains at the boundary between the -phase and the eutectic -/β-phase. Microgalvanic elements were formed with the eutectic -/β-Mg phase as cathodic site and the -Mg grains as anodes. The Al–Mn particles played a minor roll in the initiation process, even though these particles are the most noble in the microstructure and thus the driving force for a corrosion attack around these particles could be expected to be high. A close resemblance was observed between the corrosion mechanisms operating under the field-exposure conditions described here and the mechanisms operating under the previously reported laboratory conditions.  相似文献   

13.
With increasing applied voltage, three types of anodic coatings, passive film, micro‐spark ceramic coating and spark ceramic coating were made by micro‐arc oxidization (MAO) technique on AZ91D magnesium alloy in alkali‐silicate solution. The structure, composition characteristics and the electrochemical properties of coatings were also studied with SEM, XRD and EIS (electrochemical impedance spectroscopy) technique, respectively. It is found that the electrochemical properties are closely related to the structure and composition characteristics of the anodic coatings. At the same time, the characteristics of the three types of anodic coatings differ significantly, among them, the micro‐spark ceramic coating, prepared in the voltage range of 170~220V exhibits compact, homogeneous structure and highest corrosion‐resistance.  相似文献   

14.
Characterization of anodic films formed on AZ91D magnesium alloy   总被引:15,自引:0,他引:15  
Anodization of die-casted AZ91D magnesium alloy was performed in 3 M KOH+0.21 M Na3PO4+0.6 M KF base electrolyte with and without Al(NO3)3 addition. The anodic film was characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of the various anodized alloys was then evaluated in 3.5 wt % NaCl solution using electrochemical impedance spectroscopy (EIS) and immersion testing. The results showed that the anodic film was mainly composed of MgO. The addition of Al(NO3)3 into the base electrolyte results in the formation of Al2O3 and Al(OH)3 in the anodic film. The maximum amount of Al2O3 was found in the anodic film when the alloy was anodized in the electrolyte containing 0.15 M Al(NO3)3. The results of EIS analysis and morphological examination showed that the MgO anodic film modified with Al2O3 exhibited the superior corrosiom resistance for AZ91D Mg alloy.  相似文献   

15.
A phosphate-manganese conversion film was proposed as the pretreatment layer between Ni-P coating and AZ91D magnesium alloy substrate, to replace the traditional chromium oxide plus HF pretreatment. The subsequent Ni-P deposited on the layer was also characterized by its structure, morphology, microhardness and corrosion-resistance. The pretreatment layer on the substrate not only reduces the corrosion of magnesium during Ni-P plating process, but also reduces the potential difference between the matrix and the second phase. Thus, a Ni-P coating with fine and dense structure was obtained on the AZ91D magnesium alloy, which shows better corrosion resistance than the Ni-P with chromium oxide plus HF as pretreatment.  相似文献   

16.
Si对喷射成形AZ91镁合金微观组织的影响   总被引:2,自引:0,他引:2  
在保护气氛中采用喷射成形技术制各AZ91和AZ91+2.0%Si镁合金,采用OM、SEM、XRD及TEM等技术分别对合金的微观组织进行观察和分析.结果表明:与相同成分的铸造镁合金相比,喷射成形技术显著细化合金组织;喷射成形沉积态AZ91镁合金具有均匀、细小的等轴晶组织,平均晶粒尺寸约为17 μm,离异共晶β-Mg17Al12相在晶界的偏析被有效改善:对于喷射成形AZ91+2.0%Si镁合金,喷射成形过程中高的冷却速度抑制了Mg2Si相的长大,细小的Mg2Si相呈现为近球形或多边形态,与基体结合良好且弥散分布,并可以作为а-Mg异质彤核核心,使合金组织得到充分细化.  相似文献   

17.
An electroless Ni-Sn-P coating was deposited on AZ91D magnesium alloy in an alkaline-citrate-based bath where nickel sulphate and sodium stannate were used as metal ion sources and sodium hypophosphite was used as a reducing agent. The phase structure of the coating was amorphous. SEM and attached EDS observation revealed the presence of dense and uniform nodules in the ternary coating and the content of tin was 2.48wt.%. Both the electrochemical analysis and the immersion test in 10% HCl solution proved that the ternary Ni-Sn-P coating exhibited better corrosion resistance than the Ni-P coating in protecting the magnesium alloy substrate.  相似文献   

18.
The electroless Ni-P/Ni-W-P duplex coatings were deposited directly on AZ91D magnesium alloy by an acid-sulfate nickel bath.Nickel sulphate and sodium tungstate were used as metal ion sources and sodium hypophosphite was used as reducing agent.The coating was characterized for its structure,morphologies,microhardness and corrosion properties.The presence of dense and coarse nodules in the duplex coatings was observed by SEM and EDS.Tungsten content in Ni-P/Ni-W-P alloy is about 0.65%(mass fraction) and t...  相似文献   

19.
Mg alloy, AZ91D, which has a two-phase structure, was successfully electroplated in an alkaline Cu-plating bath. The Cu-coated Mg alloy specimen was further electroplated in eco-friendly acidic Cu and then trivalent Cr baths to obtain an anti-wear and anti-corrosion Cr/Cu coating. Experimental results show that the wear and corrosion resistance of the Mg alloy specimen was considerably improved by trivalent Cr electrodeposition. The hardness of the as-plated Cr deposit was drastically increased by using reduction-flame heating for 0.5 s. The above-mentioned results were measured via bonding strength, hardness, wear and corrosion tests. A superior wear and corrosion resistance was obtained when a Cu-coated Mg alloy specimen was electroplated with a trivalent Cr deposit, followed by heating with reduction-flame heating for 0.5 s.  相似文献   

20.
Composite plating is a method of co-depositing fine particles of metallic or non-metallic compounds or polymers in the plated layer to improve material properties such as lubrication, wear resistance and corrosion resistance. In the present study, Ni was chosen as the matrix material and ceria nanoparticles were chosen as the distributed phase. Nanocrystalline ceria powder was synthesized by the solution combustion process and characterized by powder X-ray diffractometry (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The nanosize ceria particles were co-deposited with nickel from a nickel sulfamate bath using conventional electrodeposition method. The electrodeposition was carried out at current densities of 0.23, 0.77, 1.55, 3.1 and 5.4 A/dm2. The microhardness of the Ni matrix was enhanced by the incorporation of ceria particles. Potentiodynamic polarization, electrochemical impedance spectroscopy and SEM were used to characterize the corrosion behaviour of Ni and Ni/CeO2 coatings. These studies showed improved corrosion resistance for Ni/CeO2 when compared to Ni. The microhardness, corrosion resistance and wear resistance of Ni and Ni/CeO2 were compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号