首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-quality Y1−xyAlxTbyBO3 (0 ≤ x ≤ 0.1, 0.04 ≤ y ≤ 0.16) phosphor powders with fine size, spherical and regular morphology, and non-agglomeration were successfully prepared by ultrasonic spray pyrolysis. The blue emission from the 5D37FJ (J = 4, 5, and 6) transition for the Y0.94−xAlxTb0.06BO3 phosphor was quenched. The optimal concentration of Tb3+ was reduced by doping Al3+ into the Y1−yTbyBO3 phosphor, i.e., y = 0.1 and 0.12 for Y0.975−yAl0.025TbyBO3 and Y1−yTbyBO3, respectively. The Al3+ doping was highly effective for improving the photoluminescence characteristics. The photoluminescence emission intensity of the Al3+-doped Y0.915Al0.025Tb0.06BO3 phosphor at 543 nm was about three times stronger than that of the Al3+-free Y0.94Tb0.06BO3 phosphor.  相似文献   

2.
The (Y0.94−xyAlxGdyEu0.06)BO3 (0 ≤ x ≤ 0.04 and 0 ≤ y ≤0.4) phosphors were single-phase with a hexagonal vaterite crystal structure. The (Y0.94−x−yAlxGdyEu0.06)BO3 phosphor powders showed smooth, regular, and spherical morphology. The emission intensity of the Al- and Gd-co-doped (Y0.74−xAlxGd0.2Eu0.06)BO3 and (Y0.925−yAl0.015GdyEu0.06)BO3 phosphors was much higher than that of Al-free (Y0.74Gd0.2Eu0.06)BO3 and Gd-free (Y0.925Al0.015Eu0.06)BO3 phosphors, respectively. This means that the simultaneous addition of Gd and Al to yttrium borates was desirable for improving their photoluminescent properties.  相似文献   

3.
The viscosity behavior of (1 − x)NaPO3xNa2B4O7 glasses (x = 0.05-0.20) have been measured as a function of temperature using beam-bending and parallel-plate viscometry. The viscosity was found to shift to higher temperatures with increasing sodium borate content. The kinetic fragility parameter, m, estimated from the viscosity curve, decreases from 52 to 33 when x increases from 0.05 to 0.20 indicating that the glass network transforms from fragile to strong with the addition of Na2B4O7. The decrease in fragility with increasing x is due to the progressive depolymerization of the phosphate network by the preferred four-coordinated boron atoms present in the low alkali borate glasses. As confirmed by Raman spectroscopy increasing alkali borate leads to enhanced B-O-P linkages realized with the accompanying transition from solely four-coordinated boron (in BO4 units) to mixed BO4/BO3 structures. The glass viscosity characteristics of the investigated glasses were compared to those of P-SF67 and N-FK5 commercial glasses from SCHOTT. We showed that the dependence of the viscosity of P-SF67 was similar to the investigated glasses due to similar phosphate network organization confirmed by Raman spectroscopy, whereas N-FK5 exhibited a very different viscosity curve and fragility parameter due to its highly coordinated silicate network.  相似文献   

4.
In this paper an attempt has been made to correlate the structural modifications and luminescence efficiencies by changing the environment of the glass network by modifying oxides. Sm3+ doped lead borate (SPB) and lead cadmium alumino borate (SCPB) glasses have been fabricated by melt quench technique at high temperature. The glass samples are characterized by XRD, FTIR, optical absorptions, fluorescence and density measurements. The effect of Sm3+ ion and glass host interaction on the emission spectra has been discussed in the view of the ionicity and covalency of hosts. The ratio of the intensities of electric to magnetic dipole emissions are calculated by varying both the concentration of the Sm3+ ion and the composition of the glass matrix. The XRD profile of all the glasses confirms their amorphous nature and FTIR spectrum shows the presence of BO3 and BO4 groups. These glasses have shown strong absorption bands in the visible (VIS and NIR) region and emit strong orange red wavelengths when excited by ultraviolet light. The concentration quenching has been noticed and ascribed to energy transfer through cross-relaxation between Sm3+ ions. Shifting of UV absorption edge towards longer wavelength with addition of Sm2O3 concentration has been observed. Incorporation of Al2O3 and CdO in 2nd glass system is responsible for strong effect on luminescence of the present glass system. Based on these results, an attempt has been made to throw some light on the relationship between the structural modifications and luminescence efficiencies in two different glass hosts as a laser active medium in the visible region. Moreover the optical basicity values were theoretically determined along with covalent behavior of two glass systems.  相似文献   

5.
Infrared spectra of oxyfluoroborate glasses of composition (70−x)H3BO3+20Li2CO3+xGd2O3, where x=0, 0.5, 1.0, 3.0 and 5.0 mol%, have been recorded to explore the role of Gd3+ ions in the structure of the glasses. We concluded that Gd3+ ion behaves as a glass modifier. The effect of thermal neutron irradiation on the structure of these glasses also has been explored and the changes compared with earlier results on γ-irradiation.  相似文献   

6.
CoFe2−xSmxO4 (x = 0–0.2) nanofibers with diameters about 100–300 nm have been prepared using the organic gel-thermal decomposition method. The composition, structure and magnetic properties of the CoFe2−xSmxO4 nanofibers were investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, inductive coupling plasma mass analyzer and vibrating sample magnetometer. The CoFe2−xSmxO4 (x = 0–0.2) nanofibers obtained at 500–700 °C are of a single spinel structure. But, at 800 °C with a relatively high Sm content of 0.15–0.2 the spinel CoFe2−xSmxO4 ferrite is unstable and the second phase of perovskite SmFeO3 occurs. The crystalline grain sizes of the CoFe2−xSmxO4 nanofibers decrease with Sm contents, while increase with the calcination temperature. This grain reduction effect of the Sm3+ ions doping is largely owing to the lattice strain and stress induced by the substitution of Fe3+ ions with larger Sm3+ ions in the ferrite. The saturation magnetization and coercivity increase with the crystallite size in the range of 8.8–57.3 nm, while decrease with the Sm content from 0 to 0.2 owing to a smaller magnetic moment of Sm3+ ions. The perovskite SmFeO3 in the composite nanofibers may contribute to a high coercivity due to the interface pinning, lattice distortion and stress in the ferrite grain boundary fixing and hindering the domain wall motion.  相似文献   

7.
A detail investigation on laser spectroscopic properties as a function of Nd3+ ions concentration in a new heavy metal oxide based Zinc–Boro–Bismuthate glasses is reported. The Judd–Ofelt analysis indicated an enhancement in Nd–O bond covalency as well as the local asymmetry of active ions on increase in dopant concentration from 0.1 to 1.5 mol%. Based on the Judd–Ofelt intensity parameters, several radiative properties such as transition probability, radiative lifetime, branching ratio and stimulated emission cross-section of Nd3+ ions have been derived. The luminescence intensity has showed a strong increase up to 0.5 mol% Nd2O3, which then attains maximum at 1 mol% and falls down for further increase in dopant concentration. The luminescence quenching behavior at higher dopant concentration has been attributed to the hopping migration assisted energy transfer mechanism leading to the cross-relaxation among active ions. The energy transfer micro-parameters for cross-relaxation (CDA) and donor energy migration (CDD) have been derived from the luminescence decay analysis as well as spectral overlap function respectively. The high stimulated emission cross-section and smaller cross-relaxation micro-parameters along with high quantum yield from the present glasses suggests their potential for compact infrared lasers and waveguide applications.  相似文献   

8.
Comparative study of the broadband down-conversion processes in Bi3+–Yb3+-codoped yttrium oxide (Y2O3) and various yttrium–aluminum oxides (Y3Al5O12, YAlO3 and Y4Al2O9) has been performed from the point of view of search for materials suitable for enhancement of efficiency of silicon solar cells. The studied materials in the form of nanopowders have been synthesized by sol–gel method and characterized by X-ray powder diffraction, scanning electron microscopy and luminescence techniques. Relative down-conversion efficiency for studied materials has been estimated. It was shown that optimal concentration of Yb3+ ions should be 2–4 at.% simultaneously with Bi3+ ions in the amount of about 1 at.%. Such dopants content provides the highest emission intensity of Yb3+ ions in near-infrared when excited into Bi3+ ions absorption in ultraviolet. Perspectives of the studied materials for enhancement of silicon solar cells are discussed.  相似文献   

9.
CoxMg1−xAl2O4 (x = 0–0.8) nanoparticles were synthesized by sol–gel method, and characterized by X-ray powder diffraction and transmission electron microscopy. X-ray photoelectron spectroscopy and 27Al solid-state NMR spectroscopy were performed to study the chemical environments of cations in the nanoparticles as a function of cobalt content and annealing temperature. The results show that the crystallite size of the particles is about 20–40 nm. Besides the tetrahedral and octahedral coordinations, the second octahedrally coordinated Al3+ ions are observed in the samples. The inversion parameter (two times the fraction of Al3+ ions in tetrahedral sites) decreases with the increase of annealing temperature and cobalt content. The fraction of octahedral Mg2+ decreases with the increase of Co concentration. The absorption spectra indicate that Co2+ ions are located in the tetrahedral sites as well as in the octahedral sites in the nanoparticles. The intensity of the absorption peak corresponding to octahedral Co2+ ions (300–500 nm) decreases with increasing annealing temperature.  相似文献   

10.
Modifying the optical behavior of zinc–tellurite glass by embedding magnetic nanoparticles has implication in nanophotonics. A series of zinc–tellurite glasses containing natural Fe3O4 nanoparticles with composition (80 − x)TeO2·xFe3O4·20ZnO (0 ≤ x ≤ 2) in mol% are synthesized by melt quenching method and their optical properties are investigated using FTIR and UV–vis–NIR spectroscopies. Lorentz–Lorenz relations are exploited to determine the refractive index, molar refraction and electronic polarizability. The sharp absorption peaks of FTIR spectra show a shift from 667 cm−1 to 671 cm−1 in the presence of nanoparticles that increase the non-bridging oxygen, confirmed by the intensity change of the TeO3 peak at 752 cm−1. A new peak around 461 cm−1 is also observed which is attributed to the band characteristic of covalent Fe–O linkages. A decrease in the Urbach energy as much as 0.122 eV and the optical energy band gap with the increase of Fe3O4 concentration (0.5–1.0 mol%) is evidenced. Electronic polarizability of the glasses increases with increasing Fe3O4 nanoparticles concentration up to 1 mol%. Interestingly, the polarizability tends to decrease with the further increase of Fe3O4 concentration at 2 mol%. The role of magnetic nanoparticles in influencing the structural and optical behavior are examined and understood.  相似文献   

11.
The red phosphors, Na5La1−xSmx(MoO4)4 and Na5Eu1−xSmx(MoO4)4, were prepared by solid-state reaction technique at high temperature. Their structure and photo-luminescent properties were investigated. The excitation bands around 400 nm of these phosphors are broadened by Sm3+-Eu3+ co-doping. And the possible energy transfer process from Sm3+ to Eu3+ in these compounds is also discussed briefly. The phosphor Na5Eu0.90Sm0.10(MoO4)4 exhibits efficient red-emitting with broadened absorption around 400 nm and appropriate CIE chromaticity coordinates (x = 0.66, y = 0.34), bright red light can be observed from the red LED based Na5Eu0.90Sm0.10(MoO4)4.  相似文献   

12.
This paper presents the characterization of single-mode waveguides for 980 and 1550 nm wavelengths. High quality planar waveguide structure was fabricated from Y1 − xErxAl3(BO3)4 multilayer thin films with x = 0.02, 0.05, 0.1, 0.3, and 0.5, prepared through the polymeric precursor and sol-gel methods using spin-coating. The propagation losses of the planar waveguides varying from 0.63 to 0.88 dB/cm were measured at 632.8 and 1550 nm. The photoluminescence spectra and radiative lifetimes of the Er3+ 4I13/2 energy level were measured in waveguiding geometry. For most samples the photoluminescence decay was single exponential with lifetimes in between 640 μs and 200 μs, depending on the erbium concentration and synthesis method. These results indicate that Er doped YAl3(BO3)4 compounds are promising for low loss waveguides.  相似文献   

13.
The glasses with the compositions of 22.5RE2O3–47.5MoO3–30B2O3 (RE: Sm, Gd, Tb, and Dy) (mol%) were prepared by a conventional melt quenching method, and the formation and laser patterning of ferroelastic β′-RE2(MoO4)3 crystals were examined. The initial crystalline phase was β′-RE2(MoO4)3 in all the glasses, and the second crystalline phases were rare-earth borates such as Gd(BO2)3, Tb(BO2)3, and DyBO3, and α-RE2(MoO4)3 in the glass with Sm2O3. It was confirmed from polarized optical microscope observations and micro-Raman scattering spectra that β′-RE2(MoO4)3 crystal lines having periodic refractive index changes were patterned by irradiations of continuous wave Yb:YVO4 fiber laser (wavelength:1080 nm, power: 0.5–2.0 W, scanning speed: 8–20 μm s−1). It was found that the periodic degree of refractive index changes depends on the kind of RE3+ ions. The present study demonstrates that the appearance of periodic domain structures is an intrinsic feature in the laser patterning of ferroelastic β′-RE2(MoO4)3 crystals.  相似文献   

14.
Intense red-emitting phosphors for LED solid-state lighting   总被引:1,自引:0,他引:1  
The phosphors Gd2−xEux(MoO4)3 (x = 0.20, 0.40, 0.60, 0.80, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0), Gd0.8−xYxEu1.2(MoO4)3 (x = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) and Gd0.2Y0.6−xEu1.2Smx(MoO4)3 (x = 0.02, 0.024, 0.028, 0.032, 0.036, 0.04) were prepared by solid-state reaction technique at 950 °C. The presence of the Y3+ and Sm3+ ions strengthen and broaden the absorption of the phosphors at ∼400 nm. The intense red-emitting phosphor Gd0.2Y0.572Eu1.2Sm0.028(MoO4)3 with orthorhombic structure was obtained. Both Eu3+ and Sm3+ f-f transition absorptions are observed in the excitation spectra, the main emission line is at 616 nm (5D0 → 7F2 transition of Eu3+) and the chromaticity coordinates (x = 0.66, y = 0.33) is very close to the NTSC standard values (x = 0.67, y = 0.33). It is considered to be an efficient red-emitting phosphor for GaN-based light emitting diode (LED).  相似文献   

15.
The laser-induced crystallization method is applied to pattern two-dimensional planar crystals consisting of ferroelastic β′-(Sm,Gd)2(MoO4)3 crystals (designated here as SGMO crystals) on the surface of Sm2O3–Gd2O3–MoO3–B2O3 glass. By scanning Yb:YVO4 fiber lasers (wavelength: 1080 nm) continuously with a small pitch (0.7 μm) between laser irradiated parts, planar SGMO crystals with periodic domain structures showing different refractive indices are patterned successfully, and a high orientation of SGMO crystals is confirmed from micro-Raman scattering spectrum and second harmonic intensity measurements. It is found that the crystal growth direction is perpendicular to the laser scanning direction. This relation, i.e., the perpendicular relation, is a different from the behavior in discrete crystal line patterning, where the crystal growth direction is consistent with the laser scanning direction. The present study proposes the possibility of the control of crystal growth direction in laser-induced crystallization in glasses.  相似文献   

16.
Co2+ and Ni2+ ions doped 20ZnO + xLi2O + (30 ? x) K2O + 50B2O3 (5  x  25) mol% glasses are prepared using melt quenching technique. Structural changes of the prepared glasses by addition of transition metal oxides, CoO and NiO are investigated by UV–vis–NIR, FT-IR spectroscopy and XRD. The XRD pattern indicates the amorphous nature of prepared glasses. FT-IR measurements of the all glasses revealed that the network structure of the glasses are mainly based on BO3 and BO4 units placed in different structural groups in which the BO3 units being dominant. The optical absorption spectra suggest the site symmetry of Co2+ and Ni2+ ions in the glasses are near octahedral. Crystal field and inter-electronic repulsion parameters are also evaluated. The optical band gap and Urbach energies exhibited the mixed alkali effect. Various physical parameters such as density, refractive index, optical dielectric constant, polaron radius, electronic polarizability and inter-ionic distance are also determined.  相似文献   

17.
The present paper brings out the results concerning the preparation and optical properties of Sm3+ and Dy3+ each ion separately in different concentrations (0.3, 0.5, 1.0 and 1.5 mol.%) and also together doped (x mol.% Dy3+ + 1.5 mol.% Sm3+): Li2O-LiF-B2O3-ZnO (where x = 0.5, 1.0 and 1.5 mol.%) glasses by a melt quenching method. Structural and thermal properties have been extensively studied for those glasses by XRD and TG/DTA. The compositional analysis has been carried out from FTIR spectral profile. Optical absorption spectral studies were also carried out. Sm3+: LBZ glasses have displayed an intense orange emission at 603 nm (4G5/2 → 6H7/2) with an excitation wavelength at 403 nm and Dy3+: LBZ glasses have shown two emissions located at 485 nm (4F9/2 → 6H15/2; blue) and 574 nm (4F9/2 → 6H13/2; yellow) with an excitation wavelength at 385 nm. Remarkably, it has been identified that the significant increase in the reddish orange emission of Sm3+ ions and diminished yellow emission pertaining to Dy3+ ions in the co-doped LBZ glass system under the excitation of 385 nm which relates to Dy3+ ions. This could be due energy transfer from Dy3+ to Sm3+. The non-radiative energy transfer from Dy3+ to Sm3+ is explained in terms of their emission spectra, donor lifetime, energy level diagram and energy transfer characteristic factors. These significantly enhanced orange emission exhibited glasses could be suggested as potential optical glasses for orange luminescence photonic devices.  相似文献   

18.
Emission and excitation spectra as well as luminescence decay kinetics of complex non-stoichiometric fluoride crystals Na0.4(Y1−xNdx)0.6F2.2 (x = 0.005, 0.05, 0.2, 1) and Na0.4(Y1−xTmx)0.6F2.2 (x = 0.0005, 0.01, 0.05, 0.1) have been studied in the VUV spectral range at liquid-helium (T  10 K) temperatures. It has been shown that these crystals show intense broad-band VUV luminescence due to the interconfiguration 5d-4f transitions in Nd3+ and Tm3+ ions. Remarkable concentration quenching is observed for Nd3+ 5d-4f luminescence whereas fast (spin-allowed) 5d-4f luminescence of Tm3+ shows no concentration quenching for the studied doping level up to 10%. The spin-allowed 5d-4f luminescence of Tm3+ in these crystals was found to be rather weak compared to spin-forbidden 5d-4f luminescence because of efficient nonradiative relaxation from higher-energy 5d states of Tm3+ to the lowest-energy 5d level responsible for spin-forbidden 5d-4f luminescence. The studied fluoride systems can be considered as promising active media for the development of VUV solid state lasers with optical pumping.  相似文献   

19.
We report random laser action in ground powders of NdxY1?xAl3(BO3)4 (x = 0.5–1) laser crystals under nanosecond pulse excitation at 802 nm. The dependence of the random laser threshold energy on the neodymium concentration and focusing conditions is investigated. The slope efficiency of the output random laser emission is determined as a function of Nd3+ concentration.  相似文献   

20.
A series of new phosphors of BaCa2Si3O9:Ln3+, (Ln = Eu, Ce, Dy, Sm, Tb) were synthesized by precipitation based method. Good crystallinity was achieved after annealing the sample at 750 °C for 1 h in air. X-ray powder diffraction (XRD) result confirmed the formation of desired BaCa2Si3O9 host. The photoluminescent excitation and emission properties of Ln3+, (Ln = Eu, Ce, Dy, Sm, Tb) activated BaCa2Si3O9 were investigated in detail. The photoluminescence (PL) analysis of individual Ln3+, (Ln = Eu, Ce, Dy, Sm, Tb) activated BaCa2Si3O9 phosphors exhibits interesting characteristic emission properties in their respective regions. From the measured emission spectra, Judd–Ofelt (J–O) intensity parameters (Ω2, Ω4, Ω6) have been calculated and using these J–O parameters various radiative parameters such as radiative transition probabilities (Arad), radiative lifetimes (τR), branching ratios (βR) and relative quantum yield have been calculated for the studied ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号