首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new iron(III) phosphate Na3Fe3(PO4)4 has been synthesized and characterized. It decomposes before melting at 860°C into FePO4 and Na3Fe2(PO4)3. The structure of the compound was determined by single-crystal X-ray diffraction. The unit cell is monoclinic with the following parameters: a=19.601(8) Å, b=6.387(1) Å, c=10.575(6) Å and β=91.81(4)°; Z=4; space group: C2/c. Na3Fe3(PO4)4 exhibits a layered structure involving corner-linkage between FeO6 octahedra, and corner- and edge-sharing between FeO6 octahedra and PO4 tetrahedra. The Na+ cations occupying the interlayer space are six- and seven-fold coordinated by oxygen atoms. The relationship between the structure of Na3Fe3(PO4)4 and the previous reported hydrate K3Fe3(PO4)4·H2O will be discussed.  相似文献   

2.
3.
The LiPO3-Y(PO3)3 system has been studied for the first time. Microdifferential thermal analysis (μ-DTA), infrared spectroscopy (IR) and X-ray diffraction were used to investigate the liquidus and solidus relations. The only new compound observed within this system is LiY(PO3)4, melting incongruently at 1104 K. An eutectic appears at 4±1 mol% Y(PO3)3 at 933 K. LiY(PO3)4 crystallizes in the monoclinic system C2/c with a unit cell: a=16.201(4) Å, b=7.013(2) Å, c=9.573(2) Å, β=125.589(9)°, Z=4 and V=884.5 Å3, which is isostructural to LiNd(PO3)4. The infrared absorption spectrum indicates that this salt is a chain polyphosphate.  相似文献   

4.
Chemical preparation, crystal structure, calorimetric, and spectroscopic investigations are given for a new organic-cation dihydrogenomonophosphate, (4-C2H5C6H4NH3)H2PO4 in the solid state. This compound crystallizes in the orthorhombic space group Pbca with the following unit cell parameters: a=8.286(3) Å, b=9.660(2) Å, c=24.876(4) Å, Z=8, V=1991.2(7) Å3, and DX=1.442 g cm−3. Crystal structure was solved with a final R=0.054 for 3305 independent reflections. The atomic arrangement coaled described as H2PO4 layers between which are located the 4-ethylanilinium cations.  相似文献   

5.
BaSi2O2N2: Eu2+ is an efficient phosphor because of its high quantum yield and quenching temperature. Partial substitution of Ba2+ by Sr2+ is the most promising approach to tune the color of phosphors. In this study, a series of (Ba1−xySrxEuy)Si2O2N2 (x = 0.0–0.97, y = 0.00–0.10) phosphors are synthesized via high-temperature solid-state reactions. Intense green to yellow phosphors can be obtained by the partial substitution of the host lattice cation Ba2+ by either Sr2+ or Eu2+. The luminescent properties and the relationships among the lowest 5d absorption bands, Stokes shifts, centroid shifts, and the splitting of Eu2+ are studied systematically. Then, based on (Ba1−xySrxEuy)Si2O2N2 phosphors and near-ultraviolet (∼395 nm)/blue (460 nm) InGaN chips, intense green–yellow light emitting diodes (LEDs) and white LEDs are fabricated. (Ba0.37Sr0.60)Si2O2N2: 0.03Eu2+ phosphors present the highest efficiency, and the luminous efficiency of white LEDs can reach 17 lm/w. These results indicate that (Ba1−xySrxEuy)Si2O2N2 phosphors are promising candidates for solid-state lighting.  相似文献   

6.
Chemical preparation, crystal structure and NMR spectroscopy of a new organic cation 5-chloro(2,4-dimethoxy)anilinium monophosphate H2PO4 are given. This new compound crystallizes in the monoclinic system, with the space group P21/c and the following parameters: a = 5.524(2) Å, b = 9.303(2) Å, c = 23.388(2) Å, β = 90.66(4), V = 1201.8(2) Å3, Z = 4 and Dx = 1.573 g cm−3. Crystal structure has been determined and refined to R = 0.031 and Rw = 0.080 using 1702 independent reflections. Structure can be described as an infinite (H2PO4)nn corrugated chains in the a-direction. The organic groups (5-Cl-2,4-(OCH3)2C6H2NH3)+ are anchored between adjacent polyanions through multiple hydrogen bonds. This compound is also investigated by IR, thermal, and solid-state, 13C, 31P MAS NMR spectroscopies.  相似文献   

7.
A new inorganic-organic hybrid material based on polyoxometallate, [L-C2H6NO2]3[(PO4)Mo12O36]·5H2O, has been successfully synthesized and characterized by single-crystal X-ray analysis, elemental analysis, infrared and ultraviolet spectroscopy, proton nuclear magnetic resonance and differential thermal analysis techniques. The title compound crystallizes in the monoclinic space group, P21/c, with a = 12.4938 (8) Å, b = 19.9326 (12) Å, c = 17.9270 (11) Å, β = 102.129 (1)°, V = 4364.8 (5) Å3, Z = 4 and R1(wR2) = 0.0513, 0.0877. The most remarkable structural feature of this hybrid can be described as two-dimensional inorganic infinite plane-like (2D/∞ [(PO4)Mo12O36]3−) which forming via weak Van der Waals interactions along the z axis. The characteristic band of the Keggin anion [(PO4)Mo12O36]3− appears at 210 nm in the UV spectrum. Thermal analysis indicates that the Keggin anion skeleton begins to decompose at 520 °C.  相似文献   

8.
Ce3+ and Dy3+ activated fluoro-apatite Ca6La2Na2(PO4)6F2 with chemical formulas Ca6La2−xLnxNa2(PO4)6F2 (Ln = Ce3+, Dy3+) were prepared by a solid state reaction technique at high temperature. The vacuum-ultraviolet (VUV) and ultraviolet (UV) spectroscopic properties are investigated. The results indicate that Ce3+ ions show the lowest 5d excitation band at ∼305 nm and a broad emission band centered at ∼345 nm. Dy3+ ions exhibit intense absorption at VUV and UV range. White-emitting under 172 nm excitation is obtained based on two dominant emissions from Dy3+ ions centered at 480 and 577 nm. In addition, the energy transfer from Ce3+ to Dy3+ in the co-doped samples are observed and discussed.  相似文献   

9.
Two newly synthesised Sr0.50SbFe(PO4)3 [Sr0.5.] and SrSb0.50Fe1.50(PO4)3 [Sr.] phases were obtained by conventional solid-state reaction techniques at 1000 °C in air atmosphere. Their crystallographic structures were determined at room temperature from X-ray powder diffraction (XRPD) data using the Rietveld analysis. Both compounds belong to the Nasicon structural family. [Sr0.5.] and [Sr.] crystallise in rhombohedral system with \textR[`3] {\text{R}}\overline{3} and \textR[`3] \textc {\text{R}}\overline{3} {\text{c}} space group, respectively. Hexagonal cell parameters for [Sr0.5.] and [Sr.] are: a = 8.227(1) ?, c = 22.767(2) ? and a = 8.339(1) ?, c = 22.704(2) ?, respectively. Sr2+ and vacancies in {[Sr0.50]3a[□0.50]3b}M1SbFe(PO4)3 are practically ordered within the two positions, 3a and 3b, of M1 sites. Structure refinements show also an ordered distribution of Sb5+ and Fe3+ ions within the Nasicon framework. Within the structure, each Sr(3a)O6 octahedron shares two faces with two Fe3+O6 octahedra and each vacancy (□(3b)O6) site is located between two Sb5+O6 octahedra. In [Sr]M1Sb0.50Fe1.50(PO4)3 compound, all M1 sites are occupied by Sr2+ and the Sb5+ and Fe3+ ions are randomly distributed within the Nasicon framework. A Raman and infrared spectroscopic study was used to obtain further structural information about the nature of bonding in both selected compositions.  相似文献   

10.
A lithium bismuth phosphate, Li2Bi14.67(PO4)6O14, has been synthesized for the first time by the solid-state method. The crystal structure was determined by single crystal X-ray diffraction at 150 K. Li2Bi14.67(PO4)6O14 crystallizes in the monoclinic system C2/c (No. 15), with a = 30.8189(4) Å, b = 5.2691(3) Å, c = 24.5302(3) Å, β = 122.84(2)°, V = 3346.81(1) Å3 and Z = 2. The structure along the b axis consists of layers of [Bi2O2] units as the basic building block. These are separated by isolated PO4 and LiO4 tetrahedra. The oxygen co-ordination around two of the phosphorus atoms is disordered. Solid-state 7Li NMR studies confirm the presence of lithium in the structure. The material shows ionic conductivity of the order of 10−5 S cm−1 at 600 °C.  相似文献   

11.
The phosphors in the system Sr2−xyP2O7:xEu2+,yMn2+ were synthesized by solid-state reactions and their photoluminescence properties were investigated. These phosphors have strong absorption in the near UV region, which is suitable for excitation of ultraviolet light emitting diodes (UVLEDs). The orange-reddish emission of Mn2+ in these phosphors can be used as a red component in the tri-color system and may be enhanced by adjusting the Mn2+/Eu2+ ratio. The energy transfer from Eu2+ to Mn2+ is observed with a transfer efficiency of ∼0.45 and a critical distance of ∼10 Å. The results reveal that Sr2−xyP2O7:xEu2+,yMn2+ phosphors could be used in white light UVLEDs.  相似文献   

12.
Sr3Bi(PO4)3:Eu2+, Sr3Bi(PO4)3:Mn2+, and Sr3Bi(PO4)3:Eu2+, Mn2+ phosphors were synthesized by solid state reaction. The structure and luminescent characteristics were investigated by X-ray powder diffraction and fluorescent spectrophotometer. All samples have the structural type of eulytine. The excitation and emission spectra of Sr3Bi(PO4)3:0.01Eu2+ sample show characteristic bands of Eu2+ ions. Also, the excitation and emission spectra of Sr3Bi(PO4)3:0.06Mn2+ sample show characteristic bands of Mn2+ ions. The emission color of Sr3Bi(PO4)3:Eu2+, Mn2+ sample could be tuned through tuning the co-dopant concentration of Mn2+ ions. The decay times for the Eu2+ ions decrease with the increase of Mn2+ dopant concentration, but the energy transfer efficiency increases with the increase of Mn2+ dopant concentration. On the basis of the luminescent spectra and fluorescence decay curves, we confirm that the energy transfer process from the Eu2+ to Mn2+ ions takes place in the co-doped Sr3Bi(PO4)3 phosphor. Sr3Bi(PO4)3:Eu2+, Mn2+ sample shows the good thermostability. The emission intensity of the sample at 400 K is about 60% of the value at 300 K. These results show Sr3Bi(PO4)3:Eu2+, Mn2+ phosphors could be anticipated for UV-pumped white-light-emitting diodes.  相似文献   

13.
A series of (Sr1−z, Caz)(Al1−y, By)2O4:xEu2+ phosphors were synthesized by the sol–gel process and were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), and photoluminescence (PL) excitation and emission spectra. The experiment results revealed that the highest intensity of Sr(Al1.98, B0.02)O4:Eu2+ phosphor with pure monoclinic SrAl2O4 was achieved by annealing at the temperature of 1200 °C and the Eu2+ content of 8 mol%. However, when the post-treatment temperature for Sr(Al1.98, B0.02)O4: Eu2+ was over 1200 °C, the Sr4Al14O25 phase appeared as a minor phase, inducing small blue-shift in the emission peak (520–509 nm). Doping higher content of B3+ (y = 0.02–0.40) into SrAl2O4:Eu2+ at 1200 °C resulted in the transformation of phase from SrAl2O4 to Sr4Al14O25 as well as to SrB2Al2O7, which made the emission intensity enhance and the emission shift to a much shorter wavelength region (λp = 467 nm). It was found that, instead of purely using Sr atoms, Ca atoms with content of 20–40% could induce the crystal structure of (Sr1−z, Caz)(Al1−y, By)2O4:xEu2+, which led to SrAl2O4 from monoclinic to hexagonal phase. As a result, SrAl2O4 solid solution was obtained and then SrAl2O4:Eu2+ to emit 518 nm green light. At higher Ca content (z > 40%), a new CaAl2O4 solid solution was formed and a blue emission of CaAl2O4:Eu2+ was obtained.  相似文献   

14.
Blue–white phosphor Sr2CeO4 belongs to a particular class of optical materials whose luminescence is governed by optical transitions associated with the electron charge transfer. The originality of its crystallographic structure, a chain-like sequence of luminescent centers, permits an effective transfer of the electronic excitation energy from the host to doped centers. Sr2CeO4, рure and doped with Eu3+-ions of different concentrations, was synthesized by the Pechini citrate-gel method. The luminescence spectra and luminescence decay curves of Sr2CeO4 and Sr2CeO4:Eu3+ at 300 and 80 K were investigated. The performed experiments revealed the Förster nonradiative energy transfer under the energy migration condition from the crystal host to the doped europium ions.  相似文献   

15.
The VUV excited luminescent properties of Ce3+, Eu3+ and Tb3+ in the matrices of KMLn(PO4)2 (M2+ = Ca, Sr; Ln3+ = Y, La, Lu) were investigated. The bands at about 155 nm in the VUV–UV excitation spectra are attributed to the host lattice absorption, which indicates that the optical band gap of KMLn(PO4)2 is about 8.0 eV. Ce3+-doped samples show typical Ce3+ emission in the range of 300–450 nm, and the energy transfer from host lattice to Ce3+ is efficient. For Eu3+-doped samples, the O2−–Eu3+ CTBs are observed to be at about 228 nm except KSrLu(PO4)2:Eu3+ (247 nm). As for Tb3+-doped samples, typical 4f → 5d absorption bands in the region of 175–250 nm were observed.  相似文献   

16.
A new yttrium borate compound K3Y3(BO3)4 has been obtained in the K2O-Y2O3-B2O3 ternary system. Its structure, determined from single crystal X-ray diffraction data, shows that it belongs to space group P21/c with unit cell dimensions of a = 10.4667(16) Å, b = 17.361(3) Å, c = 13.781(2) Å and β = 110.548(8)°. The structure consists sheets of [Y8B8O24] linked by out of sheet BO3 groups and Y ions to form a three-dimensional framework. The luminescent properties of Eu3+ and Tb3+ doped K3Y3(BO3)4 materials have also been studied.  相似文献   

17.
The family of titanium Nasicon-phosphates of generic formula M0.5IITi2(PO4)3 has been revisited using hydrothermal techniques. Two phases have been synthesized: Mn0.5IITi2(PO4)3 (MnTiP) and Co0.5IITi2(PO4)3 (CoTiP). Single crystal diffraction studies show that they exhibit two different structural types. Mn0.5IITi2(PO4)3 phosphate crystallizes in the R-3 space group, with the cell parameters a = 8.51300(10) Å and c = 21.0083(3) Å (V = 1318.52(3) Å3 and Z = 6). The Co0.5IITi2(PO4)3 phosphate crystallizes in the R-3c space group, with a = 8.4608(9) Å and c = 21.174(2) Å (V = 1312.7(2) Å3 and Z = 6). These two compounds are clearly related to the parent Nasicon-type rhombohedral structure, which can be described using [Ti2(PO4)3] framework composed of two [TiO6] octahedral interlinked via three [PO4] tetrahedra. 31P magic-angle spinning nuclear magnetic resonance (MAS-NMR) data are presented as supporting data. Curie-Weiss-type behavior is observed in the magnetic susceptibility. The phases are also characterized by IR spectroscopy and UV-visible.  相似文献   

18.
The effects of charge compensation on the luminescence behavior of a red-emitting phosphor, Ca3Sr3(VO4)4:Eu3+, were investigated. It has been observed that charge compensated by monovalent ions, especially Na+, shows greatly enhanced red emission under ultraviolet excitation. It is found that Na2CO3 addition acts as a fluxing agent and plays a role in charge compensation, which clearly improves the emission intensity of Eu3+-activated Ca3Sr3(VO4)4. Enhanced emission intensity of the corresponding charge compensated phosphors under ultraviolet radiation may find application in the production of red phosphors for white light-emitting diodes.  相似文献   

19.
The new lead vanadium phosphate Pb1.5V2(PO4)3 was synthesized by solid state reaction and characterized by X-ray powder diffraction, electron microscopy, and magnetic susceptibility measurements. The crystal structure of Pb1.5V2(PO4)3 (a = 9.78182(8) Å, S.G. P213, Z = 4) was determined from X-ray powder diffraction data and belongs to the langbeinite-type structures. It is formed by corner-linked V3+O6 octahedra and tetrahedral phosphate groups resulting in a three-dimensional framework. The lead atoms are situated in the structure interstices and only partially occupy their positions. An electron microscopy study confirmed the structure solution. Magnetic susceptibility measurements revealed Curie-Weiss (CW) behavior for Pb1.5V2(PO4)3 at high temperature whereas at around 14 K an abrupt increase on the susceptibility was observed.  相似文献   

20.
A new iron oxophosphate of composition Rb7Fe7(PO4)8O2·2H2O has been synthesized and studied by X-ray diffraction, TG and DTA analysis, magnetic susceptibility, neutron diffraction, Mössbauer spectroscopy and ionic conductivity. This compound crystallizes in the monoclinic system with the P21/c space group and the unit cell parameters a = 8.224(8) Å, b = 22.162(6) Å, c = 9.962(6) Å and β = 109.41(8)°. Its structure is built up from Fe7O32 clusters of edge- and corner-sharing FeO5 and FeO6 polyhedra. Neighboring clusters are connected by the phosphate tetrahedra to form a three-dimensional framework. The Rb+ cations and the water molecules are occupying intersecting tunnels parallel to a and c. The presence of water molecules was confirmed by TG and DTA analysis. The magnetic susceptibility measurements have shown the existence of antiferromagnetic ordering below 22 K with a weak ferromagnetic component. Additionally, these measurements show evidence for a strong magnetic frustration characterized by |θ/TN| ≈ 12. Powder neutron diffraction study confirms the presence of a long range antiferromagnetic order coupled to a weak ferromagnetic component along the b-axis. The strongly reduced magnetic moments extracted from the refinement support the existence of a magnetically frustrated ground state. The Mössbauer spectroscopy results confirmed the presence of only Fe3+ ions in both five and six coordination. The ionic conductivity measurements led to activation energy of 0.81 eV, a value that agrees with the obtained for other rubidium phosphates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号