首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Superior antimicrobial activity of 2 wt.% Pt-dispersed TiO2 thin film was observed in photokilling Gram-negative Escherichia coli bacteria within 5 min irradiation (640 μW cm−2, λ > 340 nm) from UV torch than bare TiO2 film. Severe disruption of cell membrane has occurred over illuminated Pt-TiO2 catalysts films coated with 100–300 μg powders per 5 cm2 areas over sterilized glass slides. The Pt dispersion onto TiO2 by impregnation–hydrogen reduction always exhibited better photokilling effect than Pt photodeposition, irrespective of Pt–TiO2 dose and light exposure time. Similar trend in photoactivity difference between two Pt–TiO2 catalysts is also observed in aqueous slurry because of the unlike surface structure of TiO2 due to different annealing temperatures, size and nature of Pt particles dispersion onto TiO2 photocatalysts.  相似文献   

2.
In this study, electrochromic properties of cuprous oxide nanoparticles, self-accumulated on the surface of a sol-gel silica thin film, have been investigated by using UV-visible spectrophotometry in a lithium-based electrolyte cell. The cuprous oxide nanoparticles showed a reversible electrochromic process with a thin film transmission reduction of about 50% in a narrow wavelength range of 400-500 nm, as compared to the bleached state of the film. Using optical transmission measurement, we have found that the band gap energy of the films reduced from 2.7 eV for Cu2O to 1.3 eV for CuO by increasing the annealing temperature from 220 to 300 °C in an N2 environment for 1 h. Study of the band gaps of the as-deposited, colored and bleached states of the nanoparticles showed that the electrochromic process corresponded to a reversible red-ox conversion of Cu2O to CuO on the film surface, in addition to the reversible red-ox reaction of the Cu2O film. X-ray photoelectron spectroscopy indicated that the copper oxide nanoparticles accumulated on the film surface, after annealing the samples at 200 °C. Surface morphology of the films and particle size of the surface copper oxides have also been studied by atomic force microscopy analysis. The copper oxide nanoparticles with average size of about 100 nm increased the surface area ratio and surface roughness of the silica films from 2.2% and 0.8 nm to 51% and 21 nm, respectively.  相似文献   

3.
An electrophoretic deposition (EPD) method was applied for the preparation of CoFe2O4 (CFO) films on Al2O3/Pt substrates. A coprecipitation process was used to synthesize fine CFO powders with an average particle size of ∼40 nm. Influences of suspension parameters such as solvents, iodine additive, and charged polymer on the suspension stability and film microstructure were investigated in detail. Three suspensions including CFO–acetylacetone, CFO–acetylacetone–0.08 wt% I2 and CFO–acetylacetone–0.2 wt% polyethylenimine (PEI) were optimized, respectively. It was found that CFO was deposited uniformly and the potential required for the deposition was small for the three optimized suspensions. After sintering at 1250 °C for 2 h, the film from CFO–acetylacetone–0.08 wt% I2 showed many cracks, which indicates this suspension is not suitable for preparing high quality CFO ceramic films. While the sintered films fabricated from the other two optimized suspensions exhibited dense structures. Based on the electric and magnetic properties of CFO ceramic films, it can be concluded that CFO–acetylacetone–0.2 wt% PEI is the proper suspension to prepare films with better microstructures and properties.  相似文献   

4.
To investigate the effects of solvents on the microstructure, porous TiO2 films have been prepared by sol-gel method using hydroxypropyl cellulose as the additive. Ethylene glycol monomethyl ether, propylene glycol monomethyl ether, ethanol, and the mixed solution of half ethylene glycol monomethyl ether and half ethanol were chosen as the solvents. Infrared spectra, scanning electron microscope micrographs, and X-ray diffraction patterns have been studied to characterize the microstructure of the sol and film samples. The results showed that mesoporous TiO2 films with the pore size around 20 nm, 10 nm and 6 nm were obtained when propylene glycol monomethyl ether, the mixed solution of half ethylene glycol monomethyl ether and half ethanol, and ethanol were used as solvent, respectively. It was found that COC group in the solvent was beneficial to enlarge the pore size, because the oxygen bridge in the COC groups could be pulled out and act with titanoxane polymers. When ethylene glycol monomethyl ether was used as the solvent, macroporous TiO2 film with pore size around 200 nm was obtained. This can be ascribed to the high enough concentration of effective COC groups of the solvent.  相似文献   

5.
Woon Shin Law 《Thin solid films》2009,517(18):5425-9828
The effect of TiO2 film thickness and agglomerate size on the non-UV activated superhydrophilic wetting and antifogging characteristics of TiO2 films was investigated. Evidence from Atomic Force Microscopy analysis showed that surface roughness is the key parameter requiring control so as to retain the superhydrophilic wetting and antifogging behaviour of the synthesised films. Surface roughness can be tuned by simple manipulation of the multilayer assembly of TiO2 nanoparticles through varying the film thickness and agglomerate size. A film thickness of ~ 140 nm yielded the optimum roughness (root mean square = 23 nm) to give the best superhydrophilic wetting behaviour. Thicker films reduced the film roughness and were detrimental to their superhydrophilic wetting properties. Smaller agglomerate size was also found to be important in retaining film roughness.  相似文献   

6.
Nanocrystalline titanium oxide thin films have been deposited by spin coating technique and then have been analyzed to test their application in NH3 gas-sensing technology. In particular, spectrophotometric and conductivity measurements have been performed in order to determine the optical and electrical properties of titanium oxide thin films. The structure and the morphology of such material have been investigated by X ray diffraction, Scanning microscopy, high resolution electron microscopy and selected area electron diffraction. The X-ray diffraction measurements confirmed that the films grown by this technique have good crystalline tetragonal mixed anatase and rutile phase structure. The HRTEM image of TiO2 thin film showed grains of about 50–60 nm in size with aggregation of 10–15 nm crystallites. Selected area electron diffraction pattern shows that the TiO2 films exhibited tetragonal structure. The surface morphology (SEM) of the TiO2 film showed that the nanoparticles are fine with an average grain size of about 50–60 nm. The optical band gap of TiO2 film is 3.26 eV. Gas sensing properties showed that TiO2 films were sensitive as well as fast in responding to NH3. A high sensitivity for ammonia indicates that the TiO2 films are selective for this gas.  相似文献   

7.
Powder composed of copper oxides nanoparticles with various capping agents has been synthesized and characterized with the use of X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Polyvinyl alcohol (PVA), glycol propylene, glycerin and glycerin plus ammonia were used as capping agents. The scanning electron microscopy (SEM) studies showed that nanoparticles form agglomerates with the size from 80 to 120 nm while particles size determined from the XRD experiment was in the range from 7 to 21 nm. XPS and XRD experiments revealed that depending on capping and reducing agents used in the synthesis nanoparticles are composed of Cu2O, CuO or a mixture of them. The biological activity test performed for a selected sample where the capping agent was glycerin plus ammonia has shown promising killing/inhibiting behavior, very effective especially for Gram negatives bacteria.  相似文献   

8.
The study reports H2S gas sensing characteristics of platinum (Pt) coated porous alumina (PoAl) films. The porous alumina (PoAl) thick layers were formed in the dark on aluminum substrates using an electrochemical anodization method. Thin semitransparent platinum (Pt) films were deposited on PoAl samples using chemical bath deposition (CBD) method. The films were characterized using energy dispersive X-ray analysis (EDAX) and scanning electron microscopy (SEM). The thicknesses of coated and bare films were measured using ellipsometry. The sensing properties such as sensitivity factor (S.F.), response time, recovery time and repeatability were measured using a static gas sensing system for H2S gas. The EDAX studies confirmed the purity of Pt–PoAl film and indicated the formation of pure platinum (Pt) phase. The ellipsometry studies revealed the thickness of PoAl layer of about 15–17 μm on aluminum substrates. The SEM studies demonstrated uniform distribution of spherical pores with a size between 0.250 and 0.500 μm for PoAl film and nearly spherical platinum particles with average particle size ∼100 nm for Pt–PoAl film. The gas-sensing properties of these samples were studied in a home-built static gas characterization system. The H2S gas sensing properties of Pt–PoAl at 1000 ppm of H2S gave maximum sensitivity factor (S.F.) = 1200. The response time and recovery time were found to be 2–3 min and ∼1 min respectively. Further, the measurement of H2S gas sensing properties clearly indicated the repeatability of gas sensing response of Pt–PoAl film. The present study indicated the significant potential of Pt coated PoAl films for H2S gas sensing applications in diverse areas.  相似文献   

9.
In this study, researchers prepared polyimide/silica–titania core–shell nanoparticle hybrid thin films (PI/SiO2–TiO2) from soluble fluorine-containing polyimide, colloidal silica, and titanium butoxide. The soluble polyimide with carboxylic acid end groups (6FDA–6FpDA–4ABA–COOH) could condense with titanium butoxide to provide organic–inorganic bonding, and thus prevent macrophase separation. TGA and DSC analysis showed that the decomposition temperature of hybrid materials increased with an increase in the content of silica–titania nanoparticles within the hybrid films. FTIR spectra indicated that the imidization was complete and the cross-linking Ti–O–Ti network formed. HRTEM and HRSEM images showed that the size of the core–shell nanoparticles were 18–20 nm. The thickness of titania shell on the silica is about 2.5 nm. The n&k and UV–Vis analysis showed that the prepared hybrid films had good optical properties and a high refractive index of 1.735. Researchers applied the prepared PI/SiO2–TiO2 hybrid thin films to develop a three layer antireflective (AR) coating on the glass and PMMA substrate. Results showed that the reflectance of the AR coating on the glass and PMMA substrate at 550 nm was 0.356 and 0.495%, respectively. The transparency was greater than 90% for both AR coatings on the glass and PMMA substrates.  相似文献   

10.
Mesoporous TiO2 thin films were prepared by hydrothermal-oxidation of titanium metal thin films, which were obtained by DC magnetron sputtering technique. Gold nanoparticles, which were prepared by reduction of HAuCl4, were embedded into the holes of the mesoporous TiO2 films by capillary method followed by annealing in air up to 400 °C. The size of pore of TiO2 films is about 100 nm and that of Au nanoparticles is about 10 nm in average. The morphology of the films was analyzed by field emission scanning electron microscope (FE-SEM) and scanning probe microscopes (SPMs). Subsequently, the photocatalytic performances of the obtained nanosystems in the decomposition of methylene blue solution are discussed. The obtained results show that the dispersion of Au nanoparticles on the mesoporous TiO2 matrix will help enhancing the photocatalytic activity with respect to pure TiO2 under visible light irradiation.  相似文献   

11.
The electrochemical redox behaviors of Cu(I) doped CdS nanoparticles in DNA–CTMA films are investigated in aqueous electrolyte. Both oxidation and reduction processes are electrochemically irreversible. The degradation of nanoparticles and the coupled chemical reactions in the electrochemical measurements can be avoided by fast potential scan as 1.5 V s−1. It is hardly found the residual O2 effect on the redox behavior of nanoparticles in DNA–CTMA film. The role of DNA–CTMA matrix in the charge transfer process between nanoparticles and the electrode is discussed.  相似文献   

12.
Silver nanocomposite films are found to be very effective material for anti-bacterial application. In the present work, sodium carboxylmethyl cellulose silver nanocomposite films (SCMC SNCF) were tried for antibacterial applications. To enhance their applicability novel film-silver nanoparticle-curcumin composites have been developed. SCMC SNCF are developed from sodium carboxylmethyl cellulose (SCMC), N,N 1 -methylenebisacrylamide (MBA) and silver nitrate solution. These films were characterized by FTIR, UV–visible, XRD, TGA, DSC and TEM techniques. The formed silver nanoparticles have an average particle size of ~15 nm as observed by transmission electron microscopy (TEM). Curcumin loading into SCMC SNCF is achieved by diffusion mechanism. The UV–Visible analysis indicated that higher encapsulation of curcumin in the films with higher SCMC content. Further, it was observed that the presence of silver nanoparticles in the films enhanced the encapsulation of curcumin indicating an interaction between them. Moreover, the antibacterial activity showed that the SCMC films generated with silver nanoparticles have a synergistic effect in the antimicrobial activity against Escherichia coli (E. coli). In order improve the healing efficacy as antibacterial agents, curcumin loaded with SCMC SNCFs were developed which showed significant inhibition of E. coli growth than the silver nanoparticles and curcumin alone film. Therefore, the present study clearly provides novel antimicrobial films which are potentially useful in preventing/treating infections.  相似文献   

13.
SnO2–TiO2 heterostructure films were prepared through Langmuir–Blodgett (LB) route. LB films of octadecyl amine (ODA)–titanyl oxalate multilayer deposited on Si (100) and decomposed at 600 °C showed rutile and anatase phases of ultrathin TiO2 film. Subsequently, multilayer LB film of ODA–stannate deposited on the pre deposited TiO2 film after decomposition at 600 °C resulted in thin SnO2 films on the TiO2 thin film. The phase analysis of the SnO2–TiO2 film showed cassiterite phase of SnO2 as well as the rutile/anatase mixture of TiO2 indicating a SnO2–TiO2 heterostructured film. Surface morphology of the pure TiO2 film and SnO2–TiO2 film were analyzed by using AFM. Electrical characterization by AC impedance analysis suggested SnO2–TiO2 heterostructure formation. DC current voltage measurement showed increase in photocurrent indicating visible light absorption and efficient charge separation under the sunlight type radiation.  相似文献   

14.
ZnO nanoparticles with average diameter of 25 nm were synthesized by a modified sol–gel method and used in the preparation of (in wt.%) (100 − x) poly(vinyl alcohol) (PVA)/x ZnO nanocomposite films, with x = 0, 1, 2, 3, 4, and 5. The PVA/ZnO films were exposed to UV radiation for 96 h and their thermal, morphological, and spectroscopic properties were investigated. In inert atmosphere, the nanocomposite films showed lower thermal stability than the pure PVA film, and the calorimetric data suggest an interaction between PVA and ZnO in the nanocomposite films. Some crystalline phases could be seen in the films with ZnO, and a direct dependence on the ZnO concentration was also observed. The original structure of ZnO nanoparticles remained unaltered in the PVA matrix and they were uniformly distributed on the film surface. The roughness of the PVA film was not modified by the addition of ZnO; however, it increased after 96 h of UV irradiation, more significantly in the nanocomposite films. The films showed an absorption band centered at 370 nm and a broad emission band in the UV–vis region when excited at 325 nm.  相似文献   

15.
Undoped and Mn doped ZnSe nanoparticles thin films of thickness ranging from 20 to 120 nm have been successfully synthesized via inert gas condensation (IGC) technique with constant Argon gas flow rate and deposition temperature 300 K. The energy dispersive X-ray analysis (EDX) for freshly deposited Zn1−xMnxSe thin films were carried out and revealed that Mn contents (x) were 0, 0.05, 0.16 and 0.25. The as-prepared deposited thin films of different thickness were examined using transmission electron microscope (TEM) and showed that all films were nanocrystalline with particle size ranging from 4.1 to 6.6 nm. The grazing incident in-plane X-ray diffraction (GIIXD) patterns verified nanocrystalline single phase zinc blende structure for 80 nm film thickness for all examined Zn1−xMnxSe compound films. A broadening of main characteristic lines (111), (220) and (311) of cubic phase was observed and was attributed to the lower particle size in nanocrystalline examined Zn1−xMnxSe compound films.  相似文献   

16.
Porous nanostructured polycrystalline ZnO films, free of large particulates, were deposited by picosecond laser ablation. Using a Zn target, zinc oxide films were deposited on indium tin oxide (ITO) substrates using a picosecond Nd:YVO4 laser (8 ps, 50 kHz, 532 nm, 0.17 J/cm2) in an oxygen atmosphere at room temperature (RT). The morpho-structural characteristics of ZnO films deposited at different oxygen pressures (150–900 mTorr) and gas flow rates (0.25 and 10 sccm) were studied. The post-deposition influence of annealing (250–550 °C) in oxygen on the film characteristics was also investigated. At RT, a mixture of Zn and ZnO formed. At substrate temperatures above 350 °C, the films were completely oxidized, containing a ZnO wurtzite phase with crystallite sizes of 12.2–40.1 nm. At pressures of up to 450 mTorr, the porous films consisted of well-distinguished primary nanoparticles with average sizes of 45–58 nm, while at higher pressures, larger clusters (3.1–14.7 μm) were dominant, leading to thicker films; higher flow rates favored clustering.  相似文献   

17.
In this work, we propose a simple and efficient, low-temperature (∼120 °C) process to prepare transparent thin films of poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) (PEDOT:PSS) loaded with high concentration (up to 22.5 wt%) of platinum (Pt) nanoparticles. Firstly, an improved polyol method was modified to synthesize nano-sized (∼5 nm) and mono-dispersed Pt particles. These nanoparticles were incorporated into the matrix of PEDOT:PSS thin films via a spin coating/drying procedure. The electrochemical activities of the PEDOT:PSS thin film modified electrodes with respect to the I/I3 redox reactions were investigated. It was found that the modified electrode of PEDOT:PSS thin film containing 22.5 wt% Pt exhibited the electrochemical activity comparable to the conventional Pt thin film electrode, suggesting that this electrode has good potential to serve as a counter electrode in dye-sensitized solar cells.  相似文献   

18.
Cu–Al–O thin films are deposited on (0001) sapphire substrates by radio-frequency sputtering using an Al–Cu mosaic target. The Cu/Al atomic ratio of as-deposited Cu–Al–O films is measured to be 1.1. After deposition, the Cu–Al–O films are annealed at 600, 800, and 1000 °C, respectively, for 1 h in a N2 atmosphere. The film crystal structure, electronic structure, valence band, and electrical properties are studied. The as-deposited films are amorphous and films annealed at 600 °C contain the crystallized CuO phase; the structure becomes crystallized CuAlO2 after annealing at 800 °C and 1000 °C. The 800 °C annealed film grows along the (00l) plane. The crystallization decreases with the growth of the (012) and (018) planes for films annealed at 1000 °C. The resistivity values of the 800 °C and 1000 °C annealed films were measured as 1.07 Ω-cm and 864.01 Ω-cm, respectively. The lower resistivity of the 800 °C annealed film is attributed to preferred (00l) growth orientation and a reduction of the energy band gap.  相似文献   

19.
Qin  Yipeng  Huang  Yuhan  Li  Min  Ren  Bo  Wang  Pan  Zhong  Qidi  Liu  Chunyan 《Journal of Materials Science》2021,56(21):12412-12422

Novel thermal nanoparticles [hollow mesoporous silica nanospheres (HMSNs)–poly (N-isopropyl acrylamide-acrylic acid) PNIPAM-AA] were developed with Ag nanoparticles (AgNps) as the core, mesoporous silica nanoparticles as the layer, and thermally responsive polymers PNIPAM-AA as the shell. The AgNps had good photothermal effects, PNIPAM-AA was responsive to temperature, the combination of AgNps and PNIPAM-AA could be used as a photothermal-responsive switch for drug release, and HMSNs greatly increased the drug loading of the carrier. The samples were characterized by means of scanning electron microscopy, transmission electron microscopy, N2 adsorption–desorption, thermogravimetric analysis, Fourier transform infrared spectroscopy, and UV–Vis absorption spectra. The results showed that Ag@HMSN nanoparticles possessed a uniform diameter (330 nm), high specific surface area (822.45 m2/g), and mesoporous pore size (2.75 nm). Using ibuprofen (IBU) as a model drug, the release process was monitored under in vitro conditions to investigate its release characteristics at different temperatures. The results showed that the nanoparticles had a significant regulatory effect on IBU release.

Graphical abstract
  相似文献   

20.
Porous, transparent and controllable ZnO nanoparticulate films were fabricated by self-hydrolysis of zinc salts in its crystalline water without any additions at 65 °C by an evaporating acetone solvent. The crystallite size of ZnO nanoparticles was about 30 nm, and the thickness of the nanoparticle film was controllable by simply changing the coating times. ZnO nanoparticulate films in thickness of 500 nm showed a high transmittance (>90%) in the visible range and widen bandgap (3.35 eV). The c-axis oriented ZnO nanoarray film was fabricated by a subsequent heterogeneous nucleation and growth in an aqueous solution. As-grown ZnO hybrid films showed a good transmittance (>85%) in the visible range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号