首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human fibronectin (FN) plays a key role in the biointegration of implants as the success depends on adsorption of proteins like FN [1]. Indeed FN can be an intermediary between the biomaterial surface and cells. The adsorption of human fibronectin (FN) on commercially pure titanium with a titanium oxide layer formed in a H2O2 solution (TiO2 cp) and TiO2 sputtered on Si (TiO2 sp) was studied. Adsorption isotherms and the work of adhesion were assessed by wettability studies, X-ray photoelectron spectroscopy (XPS), and by radiolabelling of FN with 125I, 125I-FN. Exchangeability of bound FN by free FN, was also evaluated by the radiolabelling technique. Contact angle determinations have shown that FN displays higher affinity for the TiO2 cp surface than for the TiO2 sp. As expected from the surface free energy values, the work of adhesion of FN is higher for the TiO2 cp substrate, the more hydrophilic one, and lower for the TiO2 sp substrate, the more hydrophobic one. The adsorption isotherms were evaluated by two different techniques: radiolabelling of FN (125I-FN) and XPS. TiO2 cp adsorbs more FN than the TiO2 sp surfaces as shown by the radiolabelling data. FN molecules are also more strongly attached to the former surface as indicated by the work of adhesion and by the exchangeability studies. Results using 125I-FN also suggests that FN adsorbs as a multilayer for FN concentrations in solution higher than 100 μg/mL.  相似文献   

2.
A modified Wenzel model was proposed to explore the influence of pore size distributions (PSDs) on water repellency of nanostructured surfaces. Rough surfaces with different porous structures, including surface areas and PSDs, were fabricated by stacking different solid ratios of TiO2 nanoparticles. These fluorinated surfaces exhibited an excellent hydrophobic performance with the highest value of contact angle ∼ 165°. The PSDs of these surfaces, determined from Dubinin-Stoeckli equation, were found to vary with the solid ratios. The modified Wenzel model incorporated with the PSDs gave a fairly good prediction in describing the variation of contact angle with surface roughness, which is very close to the experimental data. These results demonstrated that the heterogeneity of surfaces caused by different PSDs would induce the hydrophobic behavior.  相似文献   

3.
TiO2 thin films on soda lime glass were prepared by the sol-gel method and spin coating process using TiCl4 as a precursor. The AFM images indicate that the surface morphology of the films is granular with 72 nm particle size. The roughness and thickness of the films are about 3 nm and 140 nm, respectively. The XRD spectrum shows polycrystalline anatase phase without any considerable impurity phase. The UV-vis spectroscopy of the films show 80-90% transmission in the visible region. The absorption edge is at 370 nm, which corresponds to 3.3 eV energy band gap. The films have a high superhydrophilicity character after being exposed to UV illumination for about 10 min. The surfaces, which were synthesized by this method, can retain their superhydrophilicity property for at least 24 h. Our results are consistent with the idea that UV-induced wetting of TiO2 surface is caused by the removal of hydrophobic layers of hydrocarbons by TiO2-mediated photooxidation, which leads to the attractive interaction of water with clean TiO2 surface. TiO2 thin films on Si(1 1 1), Si(1 0 0), and quartz substrates need less time than glass and polycrystalline Si substrates to be converted to superhydrophilic surface.  相似文献   

4.
In order to utilize the photocatalytic function of TiO2 nanoparticles in materials manufactured from organic polymeric compounds, such as paper, resins, and textiles, TiO2 nanoparticles supported on aluminosilicate, which contained 1, 5, and 10 wt% of TiO2 were prepared by mixing commercial TiO2 nanoparticles and porous aluminosilicate at pH 7 in a cationic surfactant aqueous solution. Most of the supported TiO2 nanoparticles on the aluminosilicate surface were observed by TEM–EDS (energy depressive X-ray spectroscopy) analysis. TiO2 nanoparticles supported on aluminosilicate reduced the formaldehyde concentration from 20 to 0 ppm after UV irradiation for 20 h; the reduction of formaldehyde concentration under UV irradiation was obviously different from that in the dark. Moreover, a paper mixed with 20 wt% of TiO2 nanoparticles supported on aluminosilicate bleached the stains colored with cigarette tar after UV irradiation for 6 h. However, the paper maintained its initial tensile strength even after UV irradiation for 1 year; in contrast, the paper mixed with a simple dry mixture of TiO2 powder and aluminosilicate lost approximately half of its initial tensile strength after a year. TiO2 nanoparticles supported on aluminosilicate could exhibit photocatalytic activity without decomposing the organic polymeric compounds.  相似文献   

5.
This study investigates the enhanced adhesion of paint to cold rolled steel (CRS) in salt bath by Ar-H2 plasmas. It is found that the surface treatment on CRS, prior to painting, by low temperature plasma cleaning with argon-hydrogen plasmas at room temperature (23 °C), can be used for improving the adhesion of paint to CRS in salt bath. The tape test (ASTM 3359 Method) demonstrated this improvement, with a rating of “0” for untreated CRS for aging at a 3.5 wt% NaCl solution for 6 days and “5” for argon-hydrogen plasma-cleaned CRS at certain plasma conditions even for aging at a 3.5 wt% NaCl solution for 6 days. The adhesion performance of paint to CRS in salt bath is highly dependent on the surface characteristics of the CRS and the work of adhesion of paint to CRS.  相似文献   

6.
胡盼  周名兵  黄棣  张利  李玉宝 《功能材料》2012,43(12):1532-1536
采用不同比例的氢氟酸(1%(质量分数)HF)与双氧水(30%(质量分数)H2O2)以及二者不同配比(1∶1、5∶1和1∶5)的混合溶液对钛金属表面进行处理,制备出具有不同拓扑结构的钛活性表面.用扫描电镜(SEM)、原子力显微镜(AFM)、接触角测试和X射线光电子能谱(XPS)等手段分别对各组样品的表面形貌、粗糙度、亲疏水性及表面化学组成变化等进行分析和表征.将各组样品分别与骨肉瘤细胞株(MG63)共培养,用SEM观察细胞形态变化,利用MTT比色法测定细胞增殖能力,通过体外细胞培养实验考察处理后的钛金属表面对MG63细胞形貌及增殖分化特性的影响.结果表明,经HF和H2O2混合溶液处理后的样品表面粗糙,并含有丰富的F-和OH-基团,促进了细胞的粘附、铺展、生长和增殖,大幅改善了钛表面的生物活性.其中,氢氟酸与双氧水按1∶5配比的混合溶液处理后的样品在细胞培养前期显示出更加优良的细胞相容性,这对促进钛种植体与周围骨组织间的快速整合具有积极意义.  相似文献   

7.
This study focused on the effects of microgrooved TiO2 surfaces on osteoblast behavior. Microgrooved TiO2 surfaces with different widths (12 μm and 40 μm) and flat surfaces were fabricated on glass substrates based on the combination of a sol–gel technique and soft-lithography. Osteoblasts (MC3T3-E1) were cultured on the as-prepared microgrooved and flat TiO2 surfaces. Optical microscopy and scanning electron microscopy were used to analyze the adherent cell behavior by examining the cell morphology. Orientation angle analysis indicated that the cells tended to align along the microgrooves. This tendency was stronger on the microgrooves with smaller widths and became weak with increasing width. Alamar Blue assay indicated that the microgrooves restricted cell proliferation and the alkaline phosphatase assay revealed that the microgrooves limited the differentiation rate. This restriction increased with decreasing microgroove width. The surface energy of the TiO2 surfaces was size-dependent and followed the order γ 12 μm < γ 40 μm < γ flat surfaces. Osteoblast proliferation and differentiation on the surface with high surface energy exhibited high proliferation and differentiation rates. These results indicated that surface energy appeared to be a dominant factor for cell activity. Thus, surface energy would be a valuable index for the cell compatibility of a micropatterned surface.  相似文献   

8.
The fibronectin fragment, 9th–10th-type III domains (FIII9–10), mediates cell attachment and spreading and is commonly investigated as a bioadhesive interface for implant materials such as titania (TiO2). How the extent of the cell attachment–spreading response is related to the nature of the adsorbed protein layer is largely unknown. Here, the layer thickness and surface fraction of two FIII9–10 mutants (both protonated and deuterated) adsorbed to TiO2 were determined over concentrations used in cell adhesion assays. Unexpectedly, the isotopic forms had different adsorption behaviours. At solution concentrations of 10 mg l−1, the surface fraction of the less conformationally stable mutant (FIII9′10) was 42% for the deuterated form and 19% for the protonated form (fitted to the same monolayer thickness). Similarly, the surface fraction of the more stable mutant (FIII9′10–H2P) was 34% and 18% for the deuterated and protonated forms, respectively. All proteins showed a transition from monolayer to bilayer between 30 and 100 mg l−1, with the protein longitudinal orientation moving away from the plane of the TiO2 surface at high concentrations. Baby hamster kidney cells adherent to TiO2 surfaces coated with the proteins (100 mg l−1) showed a strong spreading response, irrespective of protein conformational stability. After surface washing, FIII9′10 and FIII9′10–H2P bilayer surface fractions were 30/25% and 42/39% for the lower/upper layers, respectively, implying that the cell spreading response requires only a partial protein surface fraction. Thus, we can use neutron reflectivity to inform the coating process for generating bioadhesive TiO2 surfaces.  相似文献   

9.
Titanium nitride (TiN), titanium oxide (TiO2) single layer, and TiN/TiO2 multilayer coatings were deposited on a 316L stainless steel substrate using reactive magnetron sputtering process with the aim of preventing bacterial adhesion. The crystal structures of as-prepared coatings were evaluated using X-ray diffraction analysis. The cubic structure of TiN, anatase, and rutile structure of TiO2 was noticed. Atomic force microscopy images exhibited a relatively smooth surface for all coatings. The surface wettability studies confirmed that the coatings were hydrophilic in nature. The rate of bacterial adhesion was evaluated using scanning electron microscopy and epifluorescence microscopy. These results demonstrated that the coated substrates could help to effectively reduce the bacterial adhesion and biofilm formations.  相似文献   

10.
The integration of electrospinning and electrospraying to prepare the fibrous catalytic filter membrane is demonstrated. The non-conductive polyethylene oxide (PEO) is blended with (±)-camphor-10-sulfonic acid (CSA) doped conductive polyaniline (PANi) for electrospinning. The conductive CSA/PANi-PEO composite fibers are produced upon electrospinning, which are used as the conductive collector for electrospraying process by which titanium dioxide (TiO2) nanoparticles (NPs) are sprayed and allowed to adsorb on the fibers. The degree of adsorption and dispersion of nano TiO2 catalysts on the surface of the CSA/PANi-PEO fibers exhibit a stronger dependence on weight percentage (wt%) of PANi in PEO solution and the strength of electrical conductivity of the fibers used during electrospraying. CSA/PANi-PEO fibers as collector reduce the wastage of TiO2 NPs during electrospraying to lesser than 5%. Among the three different composition of PANi studied, PEO with 12 wt% PANi yields very uniform diameter and beads-free fibrous structure with higher electrical conductivity. 12 wt% CSA/PANi-PEO fibrous membrane is found to support for greater dispersion of TiO2 NPs. The photocatalytic activity of the as-prepared TiO2-PANi-PEO catalytic membrane is tested against the toxicant simulant 2-chloroethyl phenyl sulfide (CEPS) under the ultraviolet light irradiation. It is observed that the TiO2 nanoparticles catalysts embedded PANi-PEO fibrous membrane decontaminated the toxicant CEPS significantly, which is due to uniform dispersion of the catalysts produced by the methodology.  相似文献   

11.
We investigated the adhesion, proliferation and osteogenic functionality of osteoblasts cultured on titanium dioxide (TiO2) nanotubes in response to different sterilization methods (dry autoclaving vs. wet autoclaving). We prepared various sizes (30–100 nm diameter) of TiO2 nanotubes on titanium substrates by anodization, sterilized nanotubes by different conditions, and seeded osteoblast cells onto the nanotube surfaces with two different cell seeding densities (10,000 vs. 50,000 cells/well in 12-culture well). The result of this study indicates that the adhesion, proliferation and alkaline phosphatase activity of osteoblasts cultured on only the larger 70 and 100 nm TiO2 nanotube arrays were dramatically changed by the different sterilization conditions at a low cell seeding density. However, with a higher cell seeding density (50,000 cells/well in 12-cell culture well), the results revealed no significant difference among altered nanotube geometry, 30–100 nm diameters, nor sterilization methods. Next, it was revealed that the nanofeatures of proteins adhered on nanotubular TiO2 morphology are altered by the sterilization method. It was determined that this protein adhesion effect, in combination with the cell density of osteoblasts seeded onto such TiO2 nanotube surfaces, has profound effects on cell behavior. This study clearly shows that these are some of the important in vitro culture factors that need to be taken into consideration, as well as TiO2 nanotube diameters which play an important role in the improvement of cell behavior and functionality.  相似文献   

12.
Titanium dioxide (TiO2) thin films were prepared on Galvanized Iron (GI) substrate by plasma-enhanced atomic layer deposition (PE-ALD) using tetrakis-dimethylamido titanium and O2 plasma to investigate the photocatalytic activities. The PE-ALD TiO2 thin films exhibited relatively high growth rate and the crystal structures of TiO2 thin films depended on the growth temperatures. TiO2 thin films deposited at 200 °C have amorphous phase, whereas those with anatase phase and bandgap energy about 3.2 eV were deposited at growth temperature of 250 °C and 300 °C. From contact angles measurement of water droplet, TiO2 thin films with anatase phase and Activ™ glass exhibited superhydrophilic surfaces after UV light exposure. And from photo-induced degradation test of organic solution, anatase TiO2 thin films and Activ™ glass decomposed organic solution under UV illumination. The anatase TiO2 thin film on GI substrate showed higher photocatalytic efficiency than Activ™ glass after 5 h UV light exposure. Thus, we suggest that the anatase phase in TiO2 thin film contributes to both superhydrophilicity and photocatalytic decomposition of 4-chlorophenol solution and anatase TiO2 thin films are suitable for self-cleaning applications.  相似文献   

13.
A transparent and super-hydrophilic TiO2 film with high adhesion was prepared by simple self-assembly methods from aqueous solution at low temperature. The excellent adherence of TiO2 films was accomplished by introducing a buffer layer with sulfonate-modified surfaces and nanoasperity. Moreover, the structure and morphology of the films were successfully controlled by deposition temperature and the pH of precursor solution. By optimizing the several parameters of solution as well as the surface functionality of the substrate, the nano-structured TiO2 film with high adhesion showed a water contact angle of below 5° and the relative transmittance to slide glass of over 90%. The fabricated TiO2 film deposited under the optimized condition is not removed from substrate after several Scotch tape (STT) tests and immersing into several kinds of solvent.  相似文献   

14.
The interfacial interactions between a rigid polyurethane foam (RPUF) and aluminium have been studied to understand the mechanisms of adhesion. Three different blowing systems are used in the production of the foam: chemical blowing, physical blowing and a mix of chemical and physical blowing systems. In addition an unfoamed system has been examined for comparison of the catalysts behaviour with and without blowing agents and the surfactant. Peeled failure surfaces have been examined by X-ray photoelectron spectroscopy (XPS) and time of flight secondary ion mass spectrometry (ToF–SIMS). To examine the intact interfacial regions of the RPUFs cured against aluminium, samples have been sectioned by microtomy. The failure surfaces of the aluminium sides exhibit relatively clean aluminium surfaces with RPUF residues observed for all three foamed systems; such thin RPUF layers (ca. 1 nm) indicate good adhesion (and a cohesive failure) between foam and substrate and that the interfacial adhesion is higher than the cohesive strength of the foam. The unfoamed system behaves in a similar manner but has a higher peel strength. A fragment indicative of covalent bond formation between isocyanate and aluminium (nominal mass at 102 u: AlCHNO3 ) is observed on the failure surface of aluminium side, where RPUF/aluminium interface region is present, for all foams. The catalyst used in these formulations, pentamethyldiethylenetriamine (PMDETA), is concentrated at the interface area. Whilst examination of the sectioned specimens shows that the silicone surfactant is concentrated within the cell area fulfilling its role on cell formation and stabilisation, and is not segregated at the RPUF/aluminium interface.  相似文献   

15.
The effect of electrolyte pH and annealing temperature on the formation of TiO2 nanotube arrays in connection with the photoelectrochemical response was investigated in this article. Well-aligned TiO2 nanotube arrays were fabricated by anodisation of Ti foil in an electrolyte consisting of 1?M of glycerol (85?wt% of glycerol and 15?wt% of water) with 0.5?wt% of NH4F at 30?V for 30?min. The pH of the electrolyte was varied from pH 1 to 7. With the increase of electrolyte pH to neutral condition, the length of the nanotube arrays was increased from ~320 to 1100?nm. As-anodised TiO2 nanotube arrays were amorphous in nature. However, anatase phase was observed after annealing at 400°C and polycrystalline anatase and rutile phase could be observed by heating up to 500°C in air atmosphere. Based on the results obtained, the length and crystalline phases of TiO2 nanotube arrays affect the performance of photoelectrochemical response and photoconversion efficiency significantly.  相似文献   

16.
Mesoporous anatase TiO2 nanopowder was synthesized by hydrothermal method at 130 °C for 12 h. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected-area electron diffraction (SAED), HRTEM, and Brunauer-Emmett-Teller (BET) surface area. The as-synthesized sample with narrow pore size distribution had average pore diameter about 3-4 nm. The specific BET surface area of the as-synthesized sample was about 193 m2/g. Mesoporous anatase TiO2 nanopowders (prepared by this study) showed higher photocatalytic activity than the nanorods TiO2, nanofibers TiO2 mesoporous TiO2, and commercial TiO2 nanoparticles (P-25, JRC-01, and JRC-03). The solar energy conversion efficiency (η) of the cell using the mesoporous anatase TiO2 was about 6.30% with the short-circuit current density (Jsc) of 13.28 mA/cm2, the open-circuit voltage (Voc) of 0.702 V and the fill factor (ff) of 0.676; while η of the cell using P-25 reached 5.82% with Jsc of 12.74 mA/cm2, Voc of 0.704 V and ff of 0.649.  相似文献   

17.
Reactivity of deposited tungsten towards TiO2(1 1 0) surface was studied using synchrotron radiation photoemission spectroscopy (both core levels, valence band and resonant photoemission) on Materials Science Beamline at ELETTRA. W depositions carried out at room temperature on TiO2(1 1 0) surface give rise to an interfacial reaction which leads to a metastable situation due to kinetic limitations. Annealing induces chemical changes which are function of the initial coverage; for fractional coverage, annealing induces completion of oxidation of deposit whereas reduction to metallic tungsten occurs for highest coverage. These results demonstrate that interaction of W with TiO2(1 1 0) surface is, as the one of molybdenum, driven by a balance between W-O interactions and W-W depending on tungsten atoms density on TiO2 surface.  相似文献   

18.
Zinc bridled chiroporphyrin (ZnBCP-8) molecules on a rutile titanium dioxide (TiO2)(110)-(1 × 1) surface were successfully observed by scanning tunneling microscopy (STM) under ultrahigh vacuum conditions. The molecules were selectively adsorbed on the surface apparently due to a molecule-substrate interaction. The origin of the interaction is thought to be Coulomb force between molecule and oxygen vacancy on the TiO2 surface. STM imaging revealed a selective molecular orientation on the TiO2(110)-(1 × 1) structure. These results support the possibility of manipulating molecules on the surface and constructing well designed molecular structures by controlling the molecular-substrate and intermolecular interactions.  相似文献   

19.
Sn-doped and undoped nano-TiO2 particles have been synthesized by hydrotermal process without acid catalyst at 225 °C in 1 h. Nanostructure-TiO2 based thin films, contain at different solid ratio of TiO2 in coating, have been prepared on glass surfaces by spin-coating technique. The structure, surface morphology and optical properties of the thin films and the particles have been investigated by element analysis and XRD, BET and UV/VIS/NIR techniques. The photocatalytic performance of the films was tested for degradation of malachite green dye in solution under UV and VIS-lights. The results showed that the hydrothermally synthesized nano-TiO2 particles are fully anatase crystalline form and are easily dispersed in water, the coated surfaces have nearly super-hydrophilic properties and, the doping of transition metal ion efficiently improved the photocatalytic performance of the TiO2 thin film. The results also proved that malachite green is decomposed catalytically due to the pseudo first-order reaction kinetics.  相似文献   

20.
?enol Y?lmaz 《Vacuum》2005,77(3):315-321
In this study, Al2O3 and Al2O3-13 wt% TiO2 were plasma sprayed onto AISI 316L stainless-steel substrate with and without Ni-5 wt% Al as bond coat layer. The coated specimens were characterized by optical microscopy, metallography and X-ray diffraction (XRD). Bonding strength of coatings were evaluated in accordance with the ASTM C-633 method. It was observed that the dominant phase was Al2O3 for both coatings. It was also found that the hardness of coating with bond coat was higher than that of coating without bond coat. Metallographic studies revealed that coating with bond coating has three different regions, which are the ceramic layer (Al2O3 or Al2O3-13 wt% TiO2), the bond coating, and matrix, which is not affected by coating. The coating performed by plasma-spray process without bond coating has two zones, the gray one indicating the ceramic layer and the white one characterizing the matrix. No delamination or spalling was observed in coatings. However, there are some pinholes in coating layer, but they are very rare. The bonding strength of coatings with bond coat was higher than that of coating without bond coat. The strength of adhesion and cohesion was determined by means of a planemeter. It was seen that percentage of cohesion strength was higher than that of adhesion strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号