首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We have grown vertically aligned ZnO nanorods and multipods by a seeded layer assisted vapor–liquid–solid (VLS) growth process using a muffle furnace. The effect of seed layer, substrate temperature and substrate material has been studied systematically for the growth of high quality aligned nanorods. The structural analysis on the aligned nanorods shows c-axis oriented aligned growth by homoepitaxy. High crystallinity and highly aligned ZnO nanorods are obtained for growth temperature of 850–900 °C. Depending on the thickness of the ZnO seed layer and local temperature on the substrate, some region of a substrate show ZnO tetrapod, hexapods and multipods, in addition to the vertically aligned nanorods. Raman scattering studies on the aligned nanorods show distinct mode at ∼438 cm−1, confirming the hexagonal wurtzite phase of the nanorods. Room temperature photoluminescence studies show strong near band edge emission at ∼378 nm for aligned nanorods, while the non-aligned nanorods show only defect-emission band at ∼500 nm. ZnO nanorods grown without the seed layer were found to be non-aligned and are of much inferior quality. Possible growth mechanism for the seeded layer grown aligned nanorods is discussed.  相似文献   

2.
ZnO thin films were fabricated using the spin coating method, ZnO nanowires by cathodically induced sol-gel deposition by the means of an anodic aluminum oxide (AAO) template, and ZnO nanorods with the hydrothermal technique. For thin film preparation, a clear, homogeneous and stable ZnO solution was prepared by the sol-gel method using zinc acetate (ZnAc) precursor which was then coated on a glass substrate with a spin coater. Vertically aligned ZnO nanowires which were approximately 65 nm in diameter and 10 μm in length were grown in an AAO template by applying a cathodic voltage in aqueous zinc nitrate solution at room temperature. For fabrication of the ZnO nanorods, the sol-gel ZnO solution was coated on glass substrate by spin coating as a seed layer. Then ZnO nanorods were grown in zinc nitrate and hexamthylenetetramine aqueous solution. The ZnO nanorods are approximately 30 nm in diameter and 500 nm in length. The ZnO thin film, ZnO nanowires and nanorods were characterized by X-ray diffraction (XRD) analysis and scanning electron microscope (SEM). The NO2 gas sensing properties of ZnO thin films, nanowires and nanorods were investigated in a dark chamber at 200 °C in the concentration range of 100 ppb-10 ppm. It was found that the response times of both ZnO thin films and ZnO nanorods were approximately 30 s, and the sensor response was depended on shape and size of ZnO nanostructures and electrode configurations.  相似文献   

3.
Vertically aligned p-type ZnO (Li–N co-doped) nanowires have been synthesized by hydrothermal method on n-type Si substrate. X-ray diffraction pattern indicated a strong peak from (0 0 0 2) planes of ZnO. The appearance of a strong peak at 437 cm−1 in Raman spectra was attributed to E2 mode of ZnO. Fourier transformed infrared studies indicated the presence of a distinct characteristic absorption peaks at 490 cm−1 for ZnO stretching mode. Compositional studies revealed the formation of Li–N co-doped ZnO, where Li was bonded with both O and N. The junction properties of p-type ZnO nanowires/n-Si heterojunction diodes were evaluated by measuring IV and CV characteristics. IV characteristics exhibited the rectifying behavior of a typical p–n junction diode.  相似文献   

4.
In this paper we report the synthesis of ZnO nanowires via chemical vapor deposition (CVD) at 650 °C. It will be shown that these nanowires are suitable for sensing applications. ZnO nanowires were grown with diameters ranging from 50 to 200 nm depending on the substrate position in a CVD synthesis reactor and the growth regimes. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), and Raman spectroscopy (RS) have been used to characterize the ZnO nanowires. To investigate the suitability of the CVD synthesized ZnO nanowires for gas sensing applications, a single ZnO nanowire device (50 nm in diameter) was fabricated using a focused ion beam (FIB). The response to H2 of a gas nanosensor based on an individual ZnO nanowire is also reported.  相似文献   

5.
In the present study we have synthesized flower-like ZnO nanostructures comprising of nanobelts of 20 nm width by template and surfactant free low-temperature (4 °C) aqueous solution route. The ZnO nanostructures exhibit flower-like morphology, having crystalline hexagonal wurtzite structure with (0 0 1) orientation. The flowers with size between 600 and 700 nm consist of ZnO units having crystallite size of ∼40 nm. Chemical and structural characterization reveals a significant role of precursor:ligand molar ratio, pH, and temperature in the formation of single-step flower-like ZnO at low temperature. Plausible growth mechanism for the formation of flower-like structure has been discussed in detail. Photoluminescence studies confirm formation of ZnO with the defects in crystal structure. The flower-like ZnO nanostructures exhibit enhanced photochemical degradation of methylene blue (MB) with the increased concentration of ligand, indicating attribution of structural features in the photocatalytic properties.  相似文献   

6.
Electrodeposition is a low temperature and low cost growth method of high quality nanostructured active materials for optoelectronic devices. We report the electrochemical preparation of ZnO nanorod/nanowire arrays on n-Si(1 1 1) and p-Si(1 1 1). The effects of thermal annealing and type of substrates on the optical properties of ZnO nanowires electroplated on silicon (1 1 1) substrate are reported. We fabricated ZnO nanowires/p-Si structure that exhibits a strong UV photoluminescence emission and a negligible visible emission. This UV photoluminescence emission proves to be strongly influenced by the thermal annealing at 150-800 °C. Photo-detectors have been fabricated based on the ZnO nanowires/p-Si heterojunction.  相似文献   

7.
High purity and yield of ZnO nanobelts, nanocombs and nanowires have been synthesized using a simple catalyst-free vapor transport process and their growth mechanism and photoluminescence properties have been investigated. Transmission electron microscopy and selected-area electron diffraction analyses reveal that the intrinsic growth behaviors of ZnO vary with the growth temperature, leading to the formation of nanostructures with different morphologies. These ZnO nanostructures show a UV emission at about 385 nm and a broad green emission around 500 nm in their photoluminescence spectra, and the green to UV emission intensity ratio is determined by their microstructures.  相似文献   

8.
We have developed a novel, simple and cost effective wet chemical synthetic route for the production of ZnO nanoneedles and nanoflowers at low temperature. The synthesis process does not require any surfactant, template or pre-seeding. The synthesized ZnO nanoneedles have very sharp tips with their lengths in the range 2-3 μm, while for the case of nanoflowers, the nanoneedles were bunched together. X-ray diffraction study and X-ray photoelectron spectroscopic studies confirmed the formation of pure ZnO phase. Studies on the electron field emission property of the grown nanostructures showed that they are very efficient field emitter. The turn-on fields and the threshold fields are 3.6 V/μm, 4.4 V/μm and 5.4 V/μm, 6.8 V/μm for the ZnO nanoneedles and ZnO nanoflowers, respectively. The enhanced field emission property was attributed to the presence of sharp tips of the nanostructures.  相似文献   

9.
ZnO nanowires were grown on a-plane GaN templates by chemical vapor deposition (CVD) without employing a catalyst. The a-plane GaN templates were pre-deposited on an r-plane sapphire substrate by metal-organic CVD. The resulting ZnO nanowires grow in angles off- related to the GaN basal plane. X-ray diffraction (XRD) spectra showed that the ZnO layer was grown with a heteroepitaxial relationship of (110)ZnO||(110)GaN. Photoluminescence spectra measured at 17 K exhibited near-band-edge emission at 372 nm with a full width at half maximum of 10 nm. The growth mechanism on a-GaN was the Volmer-Weber (VW) mode and differed from the Stranski-Krastanow (SK) mode observed for growth on c-GaN. This difference results from the higher interfacial free-energy on the a-plane between ZnO and GaN than that on the c-plane orientation.  相似文献   

10.
We investigated the self-catalytic role of indium oxide in the growth process of ZnO/ZnInO heterostructure nanowires on Si(111). The prepared nanowires had hexagonal cross sections and were tapered with tip diameters of 90 ± 5 nm and base diameters of 230 ± 5 nm. Energy dispersive X-ray and field emission Auger spectroscopies indicated that the grown nanowires were heterostructures of ZnO and ZnInO. Analysis of the early growth process revealed that indium may play a self-catalytic role. Therefore, the vapor-liquid-solid mechanism is likely to be responsible for growth of ZnO/ZnInO nanowires. X-ray diffraction and room temperature photoluminescence (PL) data demonstrated that the presence of indium results in a decrease in nanowires' crystallinity. These wires produced a large PL emission peak in the ultraviolet (UV) region and a smaller peak in the green region of the electromagnetic spectrum. The UV peak of the ZnO/ZnInO nanowires is blue-shifted with respect to that of pure ZnO nanowires.  相似文献   

11.
This work presents a rapid and simple synthesis procedure for ZnO nanowires (NWs) array by using the vapor–solid (VS) method. Experimental results indicate that the length and diameter of the grown ZnO NWs are associated with the temperature effect, while the growth density of NWs is strongly related to gas flux during the VS process. Additionally, the synthesized ZnO NWs possess specific crystalline qualities, making them highly promising for piezoelectric device applications. Therefore a piezoelectric type nanogenerator based on the ZnO NWs is also designed in this work, with a high output of piezoelectric current of 0.6 μA cm−2 obtained as well. Our results further demonstrate the feasibility of applying piezoelectric energy via the rapidly grown ZnO NWs array.  相似文献   

12.
Vertically aligned indium oxide nanowires were grown on a-plane sapphire substrate by the method of catalyst-assisted carbothermal reduction. The morphology and crystal structure of the nanowires are determined by X-ray diffraction, transmission electron microscopy and field-emission scanning electron microscopy. Two types of In2O3 nanowires were found by controlling the growth conditions. The nanowires with a hexagonal cross-section were shown to grow in [1 1 1] direction, whereas those with a square cross-section grow in [0 0 1] direction. In addition to the temperature effects, the concept of supersaturation in Au catalyst is proposed to explain the formation of these two types of nanowires. Besides, tapering, which is explained with the interplay between the vapor-liquid-solid and vapor-solid growth mechanisms, is observed in the nanowires.  相似文献   

13.
ZnO nanowires were grown on Si (100) substrates with and without Au catalyst by chemical vapor deposition employing the vapor-liquid-solid (VLS) and vapor-solid (VS) mechanisms, respectively. The diameters of the resulting nanowires were in the range 80-150 nm with typical length about 10 μm. The near-band-edge (NBE) emission of ZnO nanowires grown with and without catalyst was observed at 382 nm and 386 nm, respectively. The intensity of the NBE emission of ZnO nanowires grown without the catalyst was higher than that of the green luminescence. By sharp contrast, the intensity of the NBE emission of ZnO nanowires grown with catalyst was lower than that of green luminescence. The X-ray diffraction (XRD) spectrum of the ZnO nanowires grown without catalyst exhibited a peak intensity of c-plane 5 times higher than that of m-plane and 10 times higher than that of a-plane. However, the XRD spectrum of the ZnO nanowires grown with catalyst exhibited a peak intensity of the c-plane about 1.5 times higher than that of the m-plane and 4 times higher than that of a-plane intensity. Thus, the ZnO nanowires grown without catalyst have a preferential orientation along the c-axis direction. Our results show that the catalyst strongly effects optical and structural properties of the ZnO nanowires.  相似文献   

14.
Low temperature solution synthesis and characterization of ZnO nano-flowers   总被引:1,自引:0,他引:1  
Synthesis of flower-shaped ZnO nanostructures composed of hexagonal ZnO nanorods was achieved by the solution process using zinc acetate dihydrate and sodium hydroxide at very low temperature of 90 °C in 30 min. The individual nanorods are of hexagonal shape with sharp tip, and base diameter of about 300-350 nm. Detailed structural characterizations demonstrate that the synthesized products are single crystalline with the wurtzite hexagonal phase, grown along the [0 0 0 1] direction. The IR spectrum shows the standard peak of zinc oxide at 523 cm−1. Raman scattering exhibits a sharp and strong E2 mode at 437 cm−1 which further confirms the good crystallinity and wurtzite hexagonal phase of the grown nanostructures. The photoelectron spectroscopic measurement shows the presence of Zn, O, C, zinc acetate and Na. The binding energy ca. 1021.2 eV (Zn 2p3/2) and 1044.3 eV (Zn 2p1/2), are found very close to the standard bulk ZnO binding energy values. The O 1s peak is found centered at 531.4 eV with a shoulder at 529.8 eV. Room-temperature photoluminescence (PL) demonstrate a strong and dominated peak at 381 nm with a suppressed and broad green emission at 515 nm, suggests that the flower-shaped ZnO nanostructures have good optical properties with very less structural defects.  相似文献   

15.
The methodology on the synthesis of Sb-doped ZnO nanostructures by considering dopant as a catalyst is proposed and demonstrated. The nanostructures were synthesized using intrinsic ZnO as target and Sb-coated Si as substrate, where Sb simultaneously acts as dopant and the catalyst. The catalyst Sb is highly sensitive to temperature conditions resulted in two different nanostructures, the nanowires and the nanosheets. The surface, structural and optical characteristics of the nanowires and the nanosheets are comparatively investigated through SEM, EDX, XRD, Raman spectroscopy and photo luminescence (PL) spectroscopy. The nanowires showed a strong green emission in the PL spectrum and the presence of oxygen vacancies is confirmed thorough Raman peak shift at 556 cm−1. In the case of nanosheets, the defect in oxygen vacancies is completely reduced, and improved UV emission is observed, which confirms the diffusion of Sb in the ZnO lattice.  相似文献   

16.
Aligned Zn2GeO4 coated ZnO nanorods and Ge doped ZnO nanocombs were synthesized on a silicon substrate by a simple thermal evaporation method. The structure and morphology of the as-synthesized nanostructure were characterized using scanning electron microscopy and transmission electron microscopy. The growth of aligned Zn2GeO4 coated ZnO nanorods and Ge doped ZnO nanocombs follows a vapor-solid (VS) process. Photoluminescence properties were also investigated at room temperature. The photoluminescence spectrum reveals the nanostructures have a sharp ultraviolet luminescence peak centered at 382 nm and a broad green luminescence peak centered at about 494 nm.  相似文献   

17.
We synthesized vertically aligned ZnO nanowires on SiO2 wafer <100> using the Au, ZnO and Au/ZnO seed layers through the physical vapor deposition process. The growth direction of ZnO nanowire was controlled by using the three different seed layers. From the XRD results, we observed the highest intensity of the (002) peak on the Au/ZnO seed layer among the three seed layers. The SEM images show that all of the ZnO nanowires have an average diameter of about 100 ~ 200 nm and a length of about 5 μm, and the nanowires grown on the Au/ZnO seed layer are oriented the most perpendicularly to the substrate surface. From the PL analysis, we observed that the intensity of broad emissions at 400-600 nm relating the green emission for the ZnO nanowires on the Au/ZnO seed layer was much weaker than that for the ZnO nanowires on the ZnO seed layer. The experiment results indicate that the selection of seed layers is important to grow nanowires vertically for the application of nanoscale devices.  相似文献   

18.
We report the catalyst-free synthesis of hierarchical pure ZnO nanostructures with 6-fold structural symmetry by two-step thermal evaporation process. At the first step, the hexagonal-shaped nanowires consisting of a great deal of Zn and little oxide were prepared via the layer-by-layer growth mechanism; and at the second step, hierarchical pure ZnO nanostructures were synthesized by evaporating the Zn source on the basis of the step-one made substrate. Scanning electron microscopy, transmission electron microscope images, and the corresponding selected area electron diffraction pattern have been utilized to reveal the screw dislocation growth mechanism, through which the single crystal ZnO nanorods are epitaxially grown from the side-wall of central axial nanowires. Raman and photoluminescence spectra further indicate that, for the hierarchical ZnO nanostructures, the ultraviolet peak is related to the free exciton recombination, while the oxygen vacancies and high surface-to-volume ratio are responsible for the strong green peak emission.  相似文献   

19.
Synthesis of InSb nanowires using a chemical vapor deposition technique, as a function of growth temperature and time, was investigated. High aspect ratio InSb nanowires, having a diameter of about 5–10 nm, were grown at 400 °C for 1 h on InSb (1 1 1) substrate onto which 60 nm Au particle was used as a metal catalyst. The synthesized InSb nanowires had zinc blend single crystal structure without any stacking faults, and they were covered with a thin (∼1 nm thick) amorphous layer. Electrical characterization of InSb nanowires was conducted utilizing a back-gated SNWFET. Device characterization demonstrated that NWs were n-type and exhibited a high Ion/Ioff ratio of 106 and device resistance of 250 kΩ.  相似文献   

20.
Cobalt-doped ZnO nanorods were successfully synthesized on Si/SiO2 substrate using RF-magnetron sputtering at room temperature. The undoped and Co-doped ZnO nanostructures were characterized by XRD, FE-SEM, AFM, and PL spectra. The results showed that Co2+ replaced Zn2+ in the ZnO lattice without changing the wurtzite structure. The ZnO structure became high crystallite and was gradually converted into nanorods without extra phases as increased cobalt doping levels to 3 at.% and 4 at.%. The as-synthesized nanorod arrays were dense and vertically grew on the substrate with lengths of approximately 341 and 382.3 nm for 3 at.% and 4 at.% CO, respectively. PL analysis revealed that the ultraviolet (UV) emission intensity decreased and exhibited a blue shift with increased Co atomic percentage. This result was consistent with the energy bandgap values (3.26–3.3 eV) obtained from UV–vis spectra. The IV characteristics revealed that the Shottky diodes based on Co-doped ZnO nanostructure with Pd electrodes have high barrier height (0.715–0.797 eV) and low saturation current (0.035–0.841 μA). The barrier height decreased after annealing the diodes at 500 °C for 2 h. To the best of our knowledge, Schottky diodes based on Co-doped ZnO nanorods prepared by RF-magnetron sputtering have not yet been reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号