首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We demonstrate the formation of accurate 2D gold nanoparticle arrays via solid-state dewetting on a pre-patterned substrate. The annealing-induced dewetting of Au film on both flat and pre-patterned SiO2 substrates is investigated. The pre-patterned structures affect clearly the formation of nanoparticles, and there is a depth effect of the pre-patterned grooves on the formation of nanoparticles during dewetting. Especially in pre-patterned areas with deep grid grooves (depth 150 nm) there is almost one single particle formed in the flat areas of every unit square, thus resulting in a very periodic 2D structure of gold nanoparticles.  相似文献   

2.
A method of preparing large area patterned 2D arrays of uncapped gold (Au) nanoparticles has been developed. The pattern has been formed using self-assembly of uncapped Au nanoparticles. The Au nanoparticles were synthesized via toluene/water two phase systems using a reducing agent and colloidal solution of Au nanoparticles was produced. These nanoparticles have been prepared without using any kind of capping agent. Analysis by TEM showed discrete Au nanoparticles of 4 nm average diameter. AFM analysis also showed similar result. The TEM studies showed that these nanoparticles formed self-assembled coherent patterns with dimensions exceeding 500 nm. Spin coating on silicon substrate by suitably adjusting the speed can self-assemble these nanoparticles to lengths exceeding 1 μm.  相似文献   

3.
Conjugated polymers have been extensively applied as active materials in nanostructured platforms for optical and electrical devices. The incorporation of metal nanoparticles (NPs) into the polymer-based platform arises as a strategy to develop novel hybrid functional nanocomposites with enhanced electrical and optical properties. However, efficient and simple processing routes to produce such nanocomposites are still on demand. In this work, we present an effective route to obtain functional nanocomposites based on electrospun nanofibers coated with gold nanoparticles, displaying interesting optical and electrical properties. Polymethyl methacrylate (PMMA) electrospun nanofibers doped with poly(3-hexyl thiophene-2,5-diyl) (P3HT) were obtained by the electrospinning technique, and displayed a strong red emission centered at 650 nm assigned to P3HT. Such nanofibers were deposited on to fluorine-doped tin oxide electrodes and with modified with gold nanoparticles (AuNPs) in order to produce hybrid composite materials. The performance of electrodes modified with PMMA/P3HT-AuNPs composite material was evaluated by impedance spectroscopy and revealed an enhancement of electron transfer kinetics, which indicates it as a potential platform for optical and electrochemical (bio)sensors.  相似文献   

4.
Lee TH  Sue HJ  Cheng X 《Nanotechnology》2011,22(28):285401
Hybrid solar cells based on poly(3-hexylthiophene) (P3HT) and ZnO nanoparticle bulk heterojunctions (BHJ) combined with ZnO nanorod arrays were fabricated and analyzed. The dispersion of ZnO nanoparticles in P3HT is assisted by dye molecules, which function as a surface modifier for ZnO nanoparticles to improve compatibility between ZnO nanoparticles and P3HT. Compared to the ZnO nanorod/P3HT devices, the optimized cells with the ZnO nanoparticles dispersed in P3HT can significantly increase the short-circuit current and the overall power conversion efficiency from 1.36 mA cm(-2) to 2.51 mA cm(-2) and from 0.18% to 0.45% with 625 nm long ZnO nanorod arrays, respectively. The novel scheme of using the light-absorbing dye molecules both as light absorber and as surfactant for ZnO nanoparticles presents a facile route towards forming bulk heterojunction hybrid solar cells based on semiconducting nanomaterials and conjugated polymers.  相似文献   

5.
The present study demonstrates the effect on photovoltaic performance of poly(3-hexylthiophene) (P3HT) on doping of cadmium sulphide (CdS) quantum dots (QDs). The P3HT/CdS nanocomposite shows a 10 nm blue shift in the UV-vis absorption relative to the pristine P3HT. The blue shift in the absorption of the P3HT/CdS nanocomposite can be assigned to the quantum confinement effect from the CdS nanoparticles. Significant PL quenching was observed for the nanocomposite films, attributed to additional decaying paths of the excited electrons through the CdS. Solar cell performance of pure P3HT and dispersed with CdS QDs have been studied in the device configuration viz indium tin oxide (ITO)/poly(3,4-ethylendioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS)/P3HT:PCBM/Al and ITO/PEDOT:PSS/ P3HT:CdS:PCBM/Al, respectively. Incorporation of CdS QDs in the P3HT matrix results in the enhancement in the device efficiency (?) of the solar cell from 0.45 to 0.87%. Postproduction thermal annealing at 150 °C for 30 min improves device performance due to enhancement in the device parameters like FF, VOC and improvement in contact between active layer and Al.  相似文献   

6.
Poly(3-hexylthiophene) (P3HT) nanoparticles (NPs) were prepared by a reprecipitation method. Hydrothermal processing applied external pressure to the pristine P3HT NPs at temperatures ranging from 60 to 150 °C. Optical absorption and photoluminescence (PL) spectra for the hydrothermally treated P3HT NPs varied markedly with the processing temperature. With increasing treatment temperature, the absorption peak broadened and the peak position shifted from 510 to 623 nm; moreover, the intensity ratio of the 0–1 to 0–0 emission varied. These changes were caused by interactions between the P3HT main chains and alkyl side groups and conformational modifications induced by the high pressure during the hydrothermal process. The evolution of the optical absorption spectra of the P3HT NPs during the hydrothermal processing was strongly correlated with the variation of PL excitation spectra and with the PL emission spectra of a single NP.  相似文献   

7.
Realization of thermally and chemically durable, ordered gold nanostructures using bottom-up self-assembly techniques are essential for applications in a wide range of areas including catalysis, energy generation, and sensing. Herein, we describe a modular process for realizing uniform arrays of gold nanoparticles, with interparticle spacings of 2?nm and above, by using RF plasma etching to remove ligands from self-assembled arrays of ligand-coated gold nanoparticles. Both nanoscale imaging and macroscale spectroscopic characterization techniques were used to determine the optimal conditions for plasma etching, namely RF power, operating pressure, duration of treatment, and type of gas. We then studied the effect of nanoparticle size, interparticle spacing, and type of substrate on the thermal durability of plasma-treated and untreated nanoparticle arrays. Plasma-treated arrays showed enhanced chemical and thermal durability, on account of the removal of ligands. To illustrate the application potential of the developed process, robust SERS (surface-enhanced Raman scattering) substrates were formed using plasma-treated arrays of silver-coated gold nanoparticles that had a silicon wafer or photopaper as the underlying support. The measured value of the average SERS enhancement factor (2?×?10(5)) was quantitatively reproducible on both silicon and paper substrates. The silicon substrates gave quantitatively reproducible results even after thermal annealing. The paper-based SERS substrate was also used to swab and detect probe molecules deposited on a solid surface.  相似文献   

8.
Dopings of vaporized cis-1,2-dicyano-1,2-bis(2,4,5-trimethyl-3-thienyl) ethane (CMTE) into poly(methyl methacrylate) (PMMA), polystyrene, and polycarbonate were performed by a vacuum process, and the doping behaviors of CMTE were evaluated. Among the matrix polymers, PMMA was dispersed CMTE densely in its surface region. By using the CMTE-doped PMMA, we could fabricate a novel rewritable medium: a multi-layered film was prepared from over-coating of CMTE-doped PMMA onto poly(p-phenylene vinylene) (PPV) film, which set on a transparent substrate. Image storage could be performed upon irradiation at 365 nm at the side of CMTE/PMMA layer: color of the irradiated area changed a light yellow to a red due to photo-isomerization of CMTE. Next, upon irradiation at 365 nm at the side of the transparent substrate, PPV emitted a green fluorescence at around 530 nm, and the CMTE absorbed the emission from PPV causing image-erasure based on back-isomerization of CMTE.  相似文献   

9.
PbS nanowires with 30 nm and 60 nm diameter fabricated under the same condition of electrochemical deposition with sulfuric and oxalic anodic alumina membranes (AAM), respectively, have been successfully prepared in order to study their optical properties in relation to their size. Scanning electron microscopy indicates that the 60 nm PbS nanowire arrays have the same shape with the 30 nm. X-ray diffraction result shows that 60 nm PbS nanowires are crystalline and have a highly (200) preferential orientation like 30 nm ones. UV spectrum considers the nanowire size decrease as the absorption peak shifts to the blue. The quantum confinement effects compared between 30 nm and 60 nm PbS nanowire arrays were observed by the measurements of ultraviolet-visible absorption spectroscopy (UV-vis).  相似文献   

10.
Silica nanoparticles of ca. 20 nm in size were synthesized, from which hierarchically porous silica coatings were fabricated on poly(methyl methacrylate) (PMMA) substrates via layer-by-layer (LbL) assembly followed by oxygen plasma treatment. These porous silica coatings were highly transparent and superhydrophilic. The maximum transmittance reached as high as 99%, whereas that of the PMMA substrate is only 92%. After oxygen plasma treatment, the time for a water droplet to spread to a contact angle of lower than 5° decreased to as short as 0.5 s. Scanning and transmission electron microscopy were used to observe the morphology and structure of nanoparticles and coating surfaces. Transmission and reflection spectra were recorded on UV–vis spectrophotometer. Surface wettability was studied by a contact angle/interface system. The influence of mesopores on the transmittance and wetting properties of coatings was discussed on the basis of experimental observations.  相似文献   

11.
We report surprisingly efficient photocurrent generation at individual single-walled carbon nanotube (SWNT) /poly(3-hexylthiophene-2,5-diyl) (P3HT) junctions. Contrary to previous prediction, both semiconducting SWNTs (s-SWNTs) and metallic SWNTs (m-SWNTs) function as efficient hole acceptors. By active tuning of SWNTs' Fermi level, we confirm that P3HT p-dopes both s-SWNT and m-SWNT, and the work function difference between the nanotube and P3HT leads to a built-in voltage driving the efficient exciton dissociation and hole transfer. We further demonstrate square millimeter scale SWNT/P3HT bilayer photovoltaics using horizontally aligned SWNT arrays. Importantly, the devices exhibit greater than 90% effective external quantum efficiency. These key findings will not only enhance our knowledge of photocurrent generation at nanoscale interfaces, but also make selective omission of m-SWNT redundant, promising carbon nanomaterial-based, low-cost, high-efficiency hybrid photovoltaics.  相似文献   

12.
Poly-3-hexylthiophene (P3HT) thin films were investigated by X-ray diffraction (XRD) and electron spin resonance (ESR) to reveal the film structure and molecular organization. The XRD data showed a diffraction pattern with a plane separation between the planes containing thiophene rings of 16.0 Å. Comparison between the XRD patterns of powder and thin films of P3HT suggests that the main chains are folded on the substrate. Angular variation of the line position (g-value) of ESR spectra revealed that thiophene ring of P3HT orients along the substrate normal axis. The ESR linewidth varied by the angular rotation, indicating the one-dimensional spin-chain interactions in the P3HT thin films with a linear network of spin-chains. An organic thin-film transistor (OTFT) with P3HT film as a channel layer was then demonstrated. The P3HT films showed conducting characteristics with holes as carriers. The OTFTs indicated a field-effect mobility of 4.93 × 10− 3 cm2/Vs and an on/off ratio of 73 in the accumulation mode.  相似文献   

13.
In this paper, we report a new method to prepare the polymer/inorganic nanoparticle composites using electron irradiation-induced polymerization. The mixture of nanoparticles and MMA solution were co-irradiated by 1.6 MeV electron beam to a dose of 10, 20 and 30 kGy at a dose-rate of 60 kGy/h in air at room temperature. The products after irradiation were extracted using a soxhlet extractor with boiling xylene and investigated by X-ray diffraction (XRD), Fourier transmission infrared (FTIR), X-ray photoelectron spectroscopy (XPS), optical absorption spectra (OAP) and photoluminescence (PL). The FTIR and XPS results show that there exist some unextractable PMMA in the nanocomposites after extraction, indicating a strong interaction between the PMMA and nanoparticles. PL results show that new luminescence peaks appear at 415 and 420 nm for the nanocomposites of anatase and γ-Al2O3.  相似文献   

14.
Synthesis of uniform silver nanoparticles with a controllable size   总被引:1,自引:0,他引:1  
Tali Dadosh   《Materials Letters》2009,63(26):2236-2238
A new method for the synthesis of uniform silver nanoparticles using a single silver reduction step is presented. Fine control over the nanoparticle's size is achieved by varying the concentration of tannic acid, one of the reducing agents, resulting in uniform nanoparticles in the range of 18 nm to 30 nm in diameter with a standard deviation of less than 15%. Changes in the optical properties of the nanoparticles are correlated with their diameter. As the diameter increases the absorption peak is red-shifted. Specifically, for six different sizes of nanoparticles, ranging from 18 nm to 30 nm in diameter, a red-shift from 401 nm to 410 nm in the absorption peaks is measured. In addition, the extinction coefficient increases as the third power of the nanoparticle radius. Rhodamine 123 adsorbed to 30 nm silver nanoparticles exhibits characteristic Raman spectrum suggesting that these nanoparticles are efficient substrate for surface-enhanced Raman spectroscopy.  相似文献   

15.
Magnetic nanoparticle arrays have been fabricated by combining chemically synthesized Fe(3)O(4) nanoparticles with a diblock copolymer template substrate consisting of self-assembled polystyrene (PS) dots in a polymethylmethacrylate (PMMA) matrix. The influence of the volume fraction of the Fe(3)O(4) suspending solution and the withdrawal speed of the template on the formation of array structures was investigated. A small volume fraction of the nanoparticles and low withdrawal speed play an important role in the fabrication of the patterned arrays of nanoparticles via template assisted self-assembly. Below a withdrawal speed of 0.5?mm?s(-1) and a nanoparticle volume fraction below 0.05?vol% (in particular, at extremely high dilutions of less than 0.01?vol%), the selective deposition of one to several nanoparticles on every single PS dot becomes possible.  相似文献   

16.
CdS quantum dots have been prepared by chemical method. The X-ray diffraction results indicated the formation of CdS nanoparticles with hexagonal phase and grain size 2.5 nm. The HRTEM analysis reveals the formation of CdS quantum dots with an average grain size of ~2.5 nm. The X-ray photoelectron spectroscopy spectra exhibit the 3d 5/2 and 3d 3/2 peaks corresponding to cadmium and the S2p 3/2 peak corresponding to sulphur. Optical studies by UV–vis spectroscopy show a blue shifted absorption at 471 nm because of the quantum confined excitonic absorption. The photoluminescence spectra of CdS exhibited a broad green emission band centred at around 494 nm.  相似文献   

17.
Metal nanoparticles have generated great interest due to their excellent optical and chemical properties. The widely used chemical method for synthesising nanoparticles involves capping agents for colloidal stability. However, there are scarce reports on the application of metal nanoparticles synthesised without using capping agents. Hence, there is a need to develop pristine nanoparticles devoid of capping that can be used for translational research. Here, the authors developed a facile and rapid method for synthesising bare metal nanoparticles (platinum/silver/gold) that are chemically reactive and stable for a month upon storage. They synthesised bare metal nanoparticles of sub‐15 nm and characterised using standard techniques (UV–VIS‐NIR/DLS/zeta//TEM/XRD). They assessed the safety of the synthesised nanoparticles on the liver carcinoma cell line (HepG2). Bare gold and platinum nanoparticles were non‐toxic in comparison to bare silver nanoparticles. Bare metal nanoparticles were also checked for metal detection wherein antimony, mercury and chromium were detected using bare gold and silver nanoparticles. The spectroscopic shifts of the nanoparticles when bound to metals resulted in blue and red shifting of the plasmon band, indicating the sensing of metals. These results show that bare metal nanoparticles have the potential to emerge as a promising candidate for biomedical and sensing applications.Inspec keywords: ultraviolet spectra, electrokinetic effects, liver, cellular biophysics, nanoparticles, cancer, toxicology, gold, platinum, X‐ray diffraction, silver, colloids, transmission electron microscopy, plasmonics, visible spectra, nanomedicineOther keywords: bare plasmonic metal nanoparticles, liver carcinoma cell line, capping agents, pristine nanoparticles, bare metal nanoparticles, synthesised nanoparticles, platinum nanoparticles, silver nanoparticles, XRD, TEM  相似文献   

18.
Immobilized gold colloid particles coated with a C-18 alkylsilane layer have been characterized as a substrate for surface-enhanced Raman scattering (SERS) studies of adsorption onto hydrophobic surfaces. Atomic force microscopy images, optical extinction spectra, and SERS measurements are reported as a function of accumulation of gold colloid on glass. As the metal particles become increasingly aggregated on the surface, the SERS enhancement increases until the plasmon resonance shifts to wavelengths longer than the excitation laser. The gold colloid substrates are stable and exhibit reproducible SERS enhancement. When octadecyltrimethoxysilane is self-assembled over the gold, the metal surface is protected from exposure to solution-phase species, as evidenced by the inhibition of chemisorption of a disulfide reagent to the overcoated gold surface. The results show that interactions with gold can be blocked by a silane layer so as not to significantly influence physisorption of molecules at the C-18/solution interface. The SERS enhancement from these C-18-overcoated gold substrates is reproducible for different films prepared from the same colloidal suspension; the substrates are also stable with time and upon exposure to laser irradiation.  相似文献   

19.
In this work we report on the formation of ordered monolayers (2-D) and arrays of rods (3-D) of magnetic Co nanoparticles in magnetic field perpendicular to the substrate surface. Samples were prepared by drying a droplet of colloidal solution of Co nanoparticles (10 nm diameter) on Si/Si3N4 substrates in magnetic field between 0.2 and 0.9 T. The samples were characterized by high resolution scanning electron microscopy (SEM), atomic and magnetic force microscopy (AFM/MFM) and grazing incidence small angle X-ray scattering (GISAXS). SEM studies of monolayers show well-ordered 2-D arrays with hexagonal symmetry of 200 nm × 500 nm in size forming a mosaic structure. Rods, about 500 nm in diameter, aligned with the field direction and forming a hexagonal pattern were obtained when higher concentration of colloid and low evaporation rate of the solvent were used. The ordering of nanoparticles in the monolayer analyzed by GISAXS is described by the local order with hexagonal symmetry. The model of close packing of hard spheres is used for ordering of particles inside the rods. Magnetic features corresponding to the 3-D arrays have been observed by MFM pointing out that all magnetic moments in the rod are oriented along the field direction.  相似文献   

20.
Self-assembling Au mesoflower arrays are prepared using a polymethylmethacrylate (PMMA) template on an iron substrate via a combined top-down/bottom-up nanofabrication strategy. The PMMA template with the holes around 300-500 nm in diameter is first fabricated by using polymer blend lithography on iron substrates, and the highly homogeneous Au mesoflower arrays with less than 10 nm intraparticle gaps are subsequently obtained by an in situ galvanic reaction between HAuCl4 solution and the iron substrate under optimal stirring of the solution as well as reaction time. Owing to the unique mesostructures and uniformity, Raman measurements show that the gold mesoflower arrays obtained demonstrated a strong and reproducible surface enhanced Raman scattering (SERS) enhancement on the order of ~10(7)-10(8). The development of a SERS substrate based on the Au mesoflowers with high spatial density of hot spots, relatively low cost and facial synthesis provides a novel strategy for applications in chemical and biomolecular sensing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号