首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we present a simple microwave-assisted synthesis of Zn1  xCoxO nanopowders. With the advantages of the microwave-assisted method, we have successfully synthesized good crystalline quality and good surface morphology Zn1  xCoxO nanopowders. The nanopowders are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-VIS absorption, and micro-Raman spectroscopy. We found, in the synthesis process, the surfactant Triethanolamine (TEA) plays an important role on the morphology of Zn1  xCoxO nanoparticles. The XRD study shows that for Co doping up to 5%, Co2+ ions are successfully incorporated into the ZnO host matrix. The absorption spectra of Zn1  xCoxO (x = 1-5%) nanopowders show several peaks at 660, 611 and 565 nm, indicating the presence of Co2+ ions in the tetrahedral sites. The Raman study shows that the linewidth of E2low mode increases with Co concentration, which further indicates the incorporation of Co2+ ions into the ZnO host matrix.  相似文献   

2.
Spinel-related Mg1+2xSbxFe2−3xO4 samples (x = 0.0, 0.05, 0.10, 0.15, 0.20, and 0.30) prepared using the conventional double sintering technique were investigated using 57Fe Mössbauer spectroscopy and magnetic measurements. Mössbauer spectra favor a cationic distribution of the form (MgδFe1−δ)A[Mg1+2xδSbxFe1+δ−3x]BO4 among the tetrahedral-A and octahedral-B sites of the spinel structure. The cation distribution parameter (δ) was found to vary with the Sb5+ concentration (x). The Mössbauer hyperfine magnetic fields at both sites and the Curie temperatures of the ferrites decrease as x increases. This was attributed to gradual weakening in the magnetic exchange interaction as more Fe3+ ions are substituted by diamagnetic Sb5+ and Mg2+ ones. The sample with x = 0.30 exhibits short range magnetic order due to cationic clustering and/or superparamagnetism. The magnetization of all samples was found to be temperature-dependent implying that δ depends on temperature in addition to x. At low temperatures the substituted ferrites (x ≠ 0.0) unexpectedly exhibit higher magnetization values relative to that of the pure ferrite MgFe2O4. This behavior, while at variance with the Néel's model for ferrimagnetism, is explicable in terms of the spin canting mechanism proposed in the Yafet–Kittel model.  相似文献   

3.
The influence of Co2+ ions content on structure and sensing properties of Ni1−xCoxFe2O4 (x = 0.25, 0.5, 0.75) thin films deposited on glass substrates by spin coating is presented. Structural characterization evidenced thin films with cubic spinel structures and morphologies dependent on cobalt content. Repartition of cations in spinel tetrahedral and octahedral sites was determined and was found that the presence of Co2+ ions in octahedral sites favor the formation of Fe2+ species. The sensitivity to some reducing vapor gases (acetone, liquefied petroleum gas LPG, ethyl alcohol and methyl alcohol) was investigated and was found that thin films with x = 0.75 exhibit high sensitivity to ethyl alcohol and thin films with x = 0.25 have high sensitivity to acetone. This sensitivity largely depends on the temperature and test gas concentration and was related to the Fe2+ species formed in octahedral sites.  相似文献   

4.
Dilute magnetic semiconductors are widely studied due to their potential applications in spin-resolved electronics. We report the direct evidences of intrinsic ferromagnetism in the primarily ferromagnetic ZnO:Co thin films using near-edge X-ray absorption fine structure (NEXAFS) and soft X-ray magnetic circular dichroism (XMCD). The single phase Zn1−xCoxO thin films with nominal compositions (0.00 ≤ x ≤ 0.15) were synthesized by a spray pyrolysis technique, which exhibit room temperature ferromagnetism as revealed by alternating gradient force magnetometer (AGFM) measurements. The spectroscopic measurements indicate that most of Co dopants have substituted for Zn sites in ZnO matrix and they are present in divalent Co2+ (d7) state with tetrahedral symmetry according to the atomic multiplet calculations. The O 1s NEXAFS spectra suggest strong hybridization between O 2p and Co 3d electrons within ZnO matrix. The Co 2p XMCD measurements rule out the magnetism due to the presence of Co clusters, and show that Co–O–Co bonding provides localized magnetic moments leading to ferromagnetism.  相似文献   

5.
Chul-Hwan Choi 《Thin solid films》2007,515(5):2864-2871
High-quality ferromagnetic Zn1−xCoxO thin films were deposited on a sapphire (0001) substrate at 600 °C by using reactive radio-frequency magnetron sputtering coupled with post-annealing treatment for 1 h at 580 °C under an Ar atmosphere. High resolution X-ray diffraction patterns show that hexagonal wurzite crystal structures of undoped ZnO film were maintained even after Co doping up to 4.5 at.% without forming Co clusters or oxides. X-ray photoelectron spectroscopy spectra represent the energy difference of 15.42 eV between Co2p3/2 and Co2p1/2, which is different from 15.05 eV of Co clusters. The characteristic absorption bands near 658, 616, and 568 nm wavelengths out of UV-VIS-IR spectroscopy spectra are correlated with the d-d transitions of tetrahedrally coordinated Co2+ ions. The low temperature photoluminescence spectrum for undoped ZnO shows a strong near-band edge (NBE) emission peak of 3.42 eV without deep level emission peaks. But, Co content increases in Zn1−xCoxO film, the NBE emission peak intensity decreases and another emission peak at 3.37 eV as well as a broad green emission peak at around 2.5 eV starts to appear with larger intensity due to the more actively creating oxygen vacancies. The emission peak at 3.37 eV proves the interaction between Co ions and the hydrogenic electrons in the impurity band and also supports the typical ferromagnetic hysteresis curves obtained by superconducting quantum interface device magnetometry at 300 K for Zn1−xCoxO films. High insulator characteristics are observed for as-grown Zn1−xCoxO films whereas it exhibits n-type characteristics with the increased carrier concentration, mobility, and resistivity after post-growth annealing. The spintronic devices could be fabricated with the utilization of Zn1−xCoxO films grown by the economically feasible reactive radio-frequency magnetron sputtering coupled with the post annealing treatment.  相似文献   

6.
NixCo1−xFe2O4 (0 ≤ x ≤ 1) nanoparticles (sizes: 8–52 nm) were synthesized by chemical coprecipitation route. Single domain limit (dsdl) for the nanoparticles, determined from the coercivity (HC) versus particle-size curves, was explored as a function of nickel concentration (x). The coercivity of the particles attains a peak value at dsdl, and it was found that coercivity decreases linearly with increasing nickel concentration in the samples. The saturation magnetization (MS) and blocking temperature (Tb) of the system show increasing trends with increasing cobalt concentration in the nanoparticles.  相似文献   

7.
This is the first report ever on Nd3+ doped M-type hexaferrite nanoparticles: SrNdxFe12−xO19 (0 ≤ x ≤ 1) prepared by citrate precursor using the sol–gel technique followed by gel to crystallization. The influence of the Nd3+ substitution, Fe3+/Sr2+ molar ratio and the calcination temperature on the crystallization of ferrite phase have been examined using powder X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), inductance capacitance resistance meter bridge (LCR) and vibrating sample magnetometer (VSM). The structural analysis reveals that the Nd3+ ions rearrange themselves in the host lattice without disturbing the parent lattice and Fe3+/Sr2+ molar ratio less than 12 is more favorable to achieve single phase hexaferrite at calcination temperature 900 °C for 4 h. Mid-IR analysis confirms that Nd3+ occupies the octahedral site. Detailed studies of electrical properties of prepared materials have been investigated in the frequency range 100–1000 Hz at room temperature by LCR meter and two probe technique. The result shows that the electrical properties strongly depend upon the frequency of applied field and dopant concentration. The magnetic measurements showing a considerable improvement in coercivity with the substitution of Nd3+ on iron sites, while the unsubstituted hexaferrites have highest value of specific saturation magnetization.  相似文献   

8.
The Zn1?xCoxAl2O4 system has been reported to show a blue color with particles sizes that range from 36 nm to 30 μm. However, we have observed a pink color in this system with nanoparticles of an average size of 10 nm.Such differences in the optical properties of this nanosystem are related to the distribution of the cobalt cations in octahedral sites rather than in tetrahedral sites as in standard cobaltite spinels.The solid solution Zn1?xCoxAl2O4 (x = 0.2, 0.4, 0.6, 0.8 and 1) was synthesized by a co-precipitation reaction from the metallic salts and subsequent calcinations.The color properties and the high thermal stability (1400 °C) of these nanostructures suggest that they have the potential to be applied as satisfactory ceramic pigments.  相似文献   

9.
A series of phase-pure Co- and Al-substituted lithium nickel oxide solid solutions of the composition LiNi0.7Al0.3−xCoxO2 with x=0.0, 0.1, 0.15, 0.2, and 0.3, has been synthesized by adopting urea-assisted combustion (UAC) route. The structure and the physico-electrochemical features of the doped materials have been evaluated through PXRD, FTIR, SEM, CV, and charge/discharge studies. The stabilization of Ni in the +3 state and the existence of enhanced 2D-layered structure without any cation mixing have been substantiated from XRD. The results of the XRD and FTIR studies have established the complete mixing of Al and Co with Ni, especially at the various levels and the combinations of the dopants attempted in the present study. The enhanced electrochemical performance of LiNi0.7Al0.3−xCoxO2 may be attributed to the “synergetic effect” resulting from the presence of both Al3+ and Co3+ dopants in the LiNiO2 matrix. From CV studies, it was understood that the addition of 10% Co is effective in suppressing the phase transformation during Li+ intercalation process that leads to better electrochemical properties. The effect and the extent of substitution of Ni with Al and Co on the structural and electrochemical performance of LiNi0.7Al0.3−xCoxO2 are discussed elaborately in this communication.  相似文献   

10.
A 7Li NMR study of members of the solid-solution systems Li1+5xTa1?xO3 and Li1+xTa1?xTixO3 has indicated that the excess Li+ ions occupy interstitial tetrahedral sites in the former. In the latter system, the Li+ ions appear to occupy interstitial tetrahedral sites for small values of x, but mostly octahedral sites for x > 0.1. Defect-cluster models are proposed that rationalize these findings as well as the evolution with x of the ferroelectric Curie temperature.  相似文献   

11.
Tuning energy levels plays a crucial role in developing cost‐effective, earth‐abundant, and highly active oxygen evolution catalysts. However, to date, little attention has been paid to the effect of using heteroatom‐occupied lattice sites on the energy level to engineer electrocatalytic activity. In order to explore heteroatom‐engineered energy levels of spinel Co3O4 for highly‐effective oxygen electrocatalysts, herein Al atoms are directly introduced into the crystal lattice by occupying the Co2+ ions in the tetrahedral sites and Co3+ ions in the octahedral sites (denoted as Co2+Td and Co3+Oh, respectively). Experimental and theoretical simulations demonstrate that Al3+ ions substituting Co2+Td and Co3+Oh active sites, especially Al3+ ions occupying the Co2+Td sites, optimizes the adsorption, activation, and desorption features of intermediate species during oxygen evolution reaction (OER) processes. As a result, the optimized Co1.75Al1.25O4 nanosheet exhibit unprecedented OER activity with an ultralow overpotential of 248 mV to deliver a current of 10 mA cm–2, among the best Co‐based OER electrocatalysts. This work should not only provide fundamental understanding of the effect of Al‐occupied different Co sites in Co3–xAlxO4 composites on OER performance, but also inspire the design of low‐cost, earth‐abundant, and high‐active electrocatalysts toward water oxidation.  相似文献   

12.
13.
In the present study Zn1−xMnxO (x = 0, 0.05 and 0.1) nanoparticles (NPs) have been synthesised in aqueous solution phase at mild reaction temperature 100 °C in moderate alkaline medium (pH = 9.5), and the role of external additives; like sodium dodecyl sulphate and manganese chloride on the morphology and size of the products has been explored on the basis of transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectral analyses data. ZnO hexagonal nano-plates, core–shell like spherical/ellipsoidal Zn0.95Mn0.05O structures and thin sheets, thorn/needle mixed shaped Zn0.9Mn0.1O structures have been observed in TEM and SEM images. Zn(OH)2 formed in moderate alkaline medium, converted to Zn(II) hydroxo complex ions on dissolution, which further recrystallizes to produce wurtzite ZnO at 100 °C. From XRD and EDX analysis, successful doping of Mn2+ ions at the Zn2+ sites in ZnO host has been proved. In the photoluminescence spectra, the observed blue shifts in NBE peaks and decrease of emissions intensity on Mn doping have thoroughly been discussed in the present investigation.  相似文献   

14.
NiAl2O4 and several mixed spinels CdxNi1?xAl2O4 have been prepared, in polycrystalline form, by solid-state reaction of mixtures of CuO, CdO and Al2O3 at 1273 K. X-ray diffraction analysis was used to determine the lattice parameter, aO, oxygen parameter, u, and cation distribution for each spinel. The lattice parameter was found to increase continuously from 804.9 pm for x = 0 up to 824.6 pm for x = 0.65. The u-parameter also increases, along the same composition range, from 0.380 to 0.391. A solubility limit for Cd2+ in the spinel phase is reached at x = 0.68 (at 1273 K). Cd2+ was found to occupy almost exclusively tetrahedral sites in all cases, whilst Ni2+ showed a strong octahedral preference.  相似文献   

15.
CsTe2O6 adopts a rhombohedrally distorted pyrochlore related structure due to the 1:3 ordering of Te4+ and Te6+ in the octahedral sites respectively. Phases of the type CsTe2−xWxO6 were found to have the cubic pyrochlore structure from x = 0.2 to 0.5. These phases all contain Te4+ and Te6+ (mixed with W6+) and are disordered in octahedral sites of the pyrochlore structure. This mixed valence situation results in strong optical absorption in the visible region of the spectrum but does not produce a measurable electrical conductivity.  相似文献   

16.
《Materials Research Bulletin》2004,39(7-8):1141-1157
The spinel system Zn0.4Co0.6AlxFe2−xO4 (x=0.0, 0.25, 0.50, 0.75, and 1.0) has been prepared in air at 1300 °C by standard solid state sintering method. X-ray and neutron powder diffraction measurements have been performed to characterize the materials. The crystal structure of the system has been found out by refining neutron diffraction data and cubic symmetry corresponding to the space group Fd3m has been confirmed for all the samples of the series. Zn and Al ions exclusively enter into the tetrahedral (A) and octahedral (B) sites, respectively, while Co and Fe ions are distributed over both the A and B sites for the whole compositional range investigated. With increasing x, the occupation of Co gradually increases in A site and that in B site decreases, and the Fe ions gradually decrease in both the sites. The lattice constant decreases and the oxygen position parameter increases with increasing Al content in the system. The moment distributions in the two sublattices for different compositions have also been determined. The magnetization measurements show that the saturation magnetization and the Néel temperature decreases with increasing Al contents and the coercivity decreases initially and then increases when x>0.75.  相似文献   

17.
BaSi2O2N2: Eu2+ is an efficient phosphor because of its high quantum yield and quenching temperature. Partial substitution of Ba2+ by Sr2+ is the most promising approach to tune the color of phosphors. In this study, a series of (Ba1−xySrxEuy)Si2O2N2 (x = 0.0–0.97, y = 0.00–0.10) phosphors are synthesized via high-temperature solid-state reactions. Intense green to yellow phosphors can be obtained by the partial substitution of the host lattice cation Ba2+ by either Sr2+ or Eu2+. The luminescent properties and the relationships among the lowest 5d absorption bands, Stokes shifts, centroid shifts, and the splitting of Eu2+ are studied systematically. Then, based on (Ba1−xySrxEuy)Si2O2N2 phosphors and near-ultraviolet (∼395 nm)/blue (460 nm) InGaN chips, intense green–yellow light emitting diodes (LEDs) and white LEDs are fabricated. (Ba0.37Sr0.60)Si2O2N2: 0.03Eu2+ phosphors present the highest efficiency, and the luminous efficiency of white LEDs can reach 17 lm/w. These results indicate that (Ba1−xySrxEuy)Si2O2N2 phosphors are promising candidates for solid-state lighting.  相似文献   

18.
The effect of Al2O3 content on the structure, electrical properties, magnetic properties, and interparticle exchange interactions of (Fe65Co35)1 − x(Al2O3)x films with Al2O3 volume fractions x ranging from 0 to 0.50 was systematically investigated. Among the films with x between 0 and 0.25, the lowest coercivity of 0.56 kA/m was achieved in the (Fe65Co35)0.82(Al2O3)0.18 film. This is ascribed to the strongest exchange interactions between the Fe65Co35 nanoparticles in this film. Combined with the microstructure analysis of the (Fe65Co35)1 − x(Al2O3)x films, the modified Herzer's model was extended to interpret the variation of the coercivity with x and analyze the effect of the exchange interactions between the Fe65Co35 nanoparticles on the magnetic softness. The remanence curves confirm the existence of the exchange interactions and reveal the evolution of the exchange interaction strength with Al2O3 content.  相似文献   

19.
The effect of Ti4+ ion on the formation of magnetite, which were prepared by solid-state route reaction method, were studied by resistivity, Raman and 57Fe Mössbauer spectrometry. Resistivity measured in the range of 10 < T < 300 K for Ti4+ magnetite Fe3−xTixO4 exhibit first order phase transformations at the Verwey transition Tv for Fe3O4, Fe2.98Ti0.02O4 and Fe2.97Ti0.03O4 at 123 K, 121 K and 118 K, respectively. No first order phase transition was observed for Fe2.9Ti0.1O4 and small polaron model retraces the semiconducting resistivity behavior with activation energy of about 72 meV. The changes in Raman spectra as a function of doping show that the changes are gradual for samples with higher Ti doping. The Raman active mode for Fe2.9Ti0.1O4 at ≅634.4 cm−1 is shifted as compared to parent Fe3O4 at ≅670 cm−1, inferring that Mn2+ ions are located mostly on the octahedral sites. 57Fe Mössbauer spectroscopy probes the site preference of the substitutions and their effect on the hyperfine magnetic fields confirms that Ti4+ ions are located mostly on the octahedral sites of the Fe3−xTixO4 spinel structure.  相似文献   

20.
A series of (Sr1−z, Caz)(Al1−y, By)2O4:xEu2+ phosphors were synthesized by the sol–gel process and were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), and photoluminescence (PL) excitation and emission spectra. The experiment results revealed that the highest intensity of Sr(Al1.98, B0.02)O4:Eu2+ phosphor with pure monoclinic SrAl2O4 was achieved by annealing at the temperature of 1200 °C and the Eu2+ content of 8 mol%. However, when the post-treatment temperature for Sr(Al1.98, B0.02)O4: Eu2+ was over 1200 °C, the Sr4Al14O25 phase appeared as a minor phase, inducing small blue-shift in the emission peak (520–509 nm). Doping higher content of B3+ (y = 0.02–0.40) into SrAl2O4:Eu2+ at 1200 °C resulted in the transformation of phase from SrAl2O4 to Sr4Al14O25 as well as to SrB2Al2O7, which made the emission intensity enhance and the emission shift to a much shorter wavelength region (λp = 467 nm). It was found that, instead of purely using Sr atoms, Ca atoms with content of 20–40% could induce the crystal structure of (Sr1−z, Caz)(Al1−y, By)2O4:xEu2+, which led to SrAl2O4 from monoclinic to hexagonal phase. As a result, SrAl2O4 solid solution was obtained and then SrAl2O4:Eu2+ to emit 518 nm green light. At higher Ca content (z > 40%), a new CaAl2O4 solid solution was formed and a blue emission of CaAl2O4:Eu2+ was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号